Effect of Cylinder Bore Out-of-Roundness on Piston Ring Rotation and Engine Oil Consumption

1993 ◽  
Author(s):  
Eric W. Schneider ◽  
Daniel H. Blossfeld ◽  
Donald C. Lechman ◽  
Robert F. Hill ◽  
Richard F. Reising ◽  
...  
2003 ◽  
Vol 125 (4) ◽  
pp. 1081-1089 ◽  
Author(s):  
Y. Piao ◽  
S. D. Gulwadi

The role of cylinder bore shapes in engine performance has been the subject of several studies in recent years. In particular, the influence of bore distortion on oil consumption under high speed conditions has generated significant interest. In this paper, the effect of an axial bore profile on radial dynamics of a ring is investigated. Radial ring motions within grooves due to the axial bore profile can generate significant inertial effects and also have an impact on ring end-gap sizes and lubrication conditions at the ring-liner interfaces. The magnitude of such effects is dependent on the ring-pack configuration, engine operating conditions (speed and load) and axial bore profile details. These issues are investigated in this study due to their implication on engine oil consumption, friction and blow-by. The authors have developed an analytical expression to account for the effects of radial ring inertia due to an axial bore profile for implementation in a piston ring-pack simulation tool RINGPAK. Simulation results from a gasoline engine study are presented to illustrate the effects of engine speeds, ring tensions, and characteristics of axial bore profiles on ring radial dynamics and ring-liner lubrication. Relevant qualitative comparisons are made to experimental measurements available in the literature.


Author(s):  
Y. Piao ◽  
S. D. Gulwadi

The role of cylinder bore shapes in engine performance has been the subject of several studies in recent years. In particular, the influence of bore distortion on oil consumption under high speed conditions has generated significant interest. In this paper, the effect of an axial bore profile on radial dynamics of a ring is investigated. Radial ring motions within grooves due to the axial bore profile can generate significant inertial effects and also have an impact on ring end-gap sizes and lubrication conditions at the ring-liner interfaces. The magnitude of such effects is dependent on the ring-pack configuration, engine operating conditions (speed and load) and axial bore profile details. These issues are investigated in this study due to their implication on engine oil consumption, friction and blow-by. The authors have developed an analytical expression to account for the effects of radial ring inertia due to an axial bore profile for implementation in a piston ring–pack simulation tool RINGPAK. Simulation results from a gasoline engine study are presented to illustrate the effects of engine speeds, ring tensions and characteristics of axial bore profiles on ring radial dynamics and ring-liner lubrication. Relevant qualitative comparisons are made to experimental measurements available in the literature.


Author(s):  
K. G. Mahmoud ◽  
O. Knaus ◽  
T. Parikyan ◽  
M. Patete

The automotive industry is subjected to increasing pressure in order to improve fuel efficiency and reduce the CO2 emissions of internal combustion (IC) engines. The power cylinder system (piston, piston ring, and liner) contributes significantly to the friction losses, engine oil consumption and gas leakage called blow-by. The role of cylinder bore shape in engine performance has been the subject of several studies in recent years. High bore distortion must be avoided because it can lead to ring conformability issues, which leads to inadequate sealing resulting in increased blow-by and oil consumption. It also leads to asperity contact between the piston skirt and cylinder bore increasing friction causing abnormally high surface wear. Although bore distortion cannot be eliminated, engine manufacturers strive to contain it within acceptable limits. Therefore, numerical analysis of the power cylinder with physically based mathematical models becomes very essential to the engine and component manufacturer in order to reduce engine development lead time and minimize the number of engine tests. The integrated ring-pack modeling methodology developed by the authors [1] is used to investigate the piston ring-pack performance. Although the modeling approach can be used for extensive parameter analysis of piston, piston rings and lubrication oil consumption, the influence of the bore distortion on the ring conformability and its impact on blow-by, friction and wear is highlighted in this study. Piston tilting, piston ring twist and surface roughness of the piston ring and liner have been taken into consideration.


Author(s):  
Kenta Tomizawa ◽  
Akemi Ito

Abstract Oil consumption of an engine causes particulate matter, poisoning catalysts and sometimes abnormal combustion like pre-ignition. One of the factors of oil consumption is oil transport via a piston ring-gap. Coincident of ring-gaps at a same position may cause an increase in oil consumption. In this research, the effect of coincident the ring gaps on oil consumption was measured using with/without the a stopper pin for the ring rotation by sulfur tracer method. A lot of spikes was found in the wave form of sulfur concentrate for the rings without the stopper pin, and higher value of oil consumption was simultaneously measured. Then the force which caused ring rotation (hereafter ‘rotational force’) was measured by a newly developed method. A cantilever was installed in the ring gap, and the strain gauges were pasted on the cantilever. Therefore, the rotational force was measured as the bending stress of the cantilever. It was found that the rotational force showed a periodic wave form against the crank angle. Furthermore, it was also found that the amplitude of the rotational force was strong affected by the engine operating conditions. The rotational force was also affected by the gap position. It was assumed that not only the piston lateral motion but also the cylinder bore shape affected the rotational force. The mechanism of generating the rotational force is the future subject.


1993 ◽  
Author(s):  
Hideki Yoshida ◽  
Masaki Yamada ◽  
Hiroyuki Kobayashi

Author(s):  
Akemi Ito ◽  
Kazuya Mochiduki ◽  
Koji Kikuhara ◽  
Masatsugu Inui ◽  
Hirotaka Akamatsu

Engine oil consumption must be reduced for reducing exhaust gas emissions. It is well known that a cylinder bore shape under engine operating condition affects oil consumption. This study aimed clarifying the conformability of an oil ring against the distorted cylinder bore. Oil film thickness at the sliding surface of oil ring upper and lower rails was successfully measured by LIF method using optical fiber, which was embedded in the oil ring. The piston motion was also measured and compared with measured oil film thickness. It was found that the piston tilting motion affected oil film thickness hence its conformability. It was also found that thicker oil film was found at the following rail than that at former rail, and it was suggested that oil was supplied to the following rail from not only the sliding surface of the former ring but also somewhere, for example, the oil ring groove.


2013 ◽  
Vol 136 (1) ◽  
Author(s):  
Fatih Kagnici ◽  
Ozgen Akalin

It is well known that cylinder bore deformations during engine operation cause a number of problems in piston ring lubrication. Particularly, the deterioration of piston ring and cylinder bore conformability results in a significant increase in lubricating oil consumption. Therefore, measurement and identification of cylinder bore distortion has been an important subject for engine designers. In this study, an analytical lubricating oil consumption model was developed for a diesel engine. Piston stiffness was identified as an important input parameter for the oil consumption model, and the stiffness matrix of the piston was calculated using finite element simulations. In addition, finite element analysis was performed to determine the distorted cylinder block shape in engine running conditions. Pressure curves and loads obtained in actual engine tests were used in the analysis. The Fourier coefficients of a distorted cylinder bore was calculated which characterize the deformed bore orders. Using these Fourier coefficients, several distorted bore shapes were regenerated, including a straight bore and the effect of each order on total lube oil consumption was investigated by means of the oil consumption model.


Author(s):  
C. Anderberg ◽  
S. Johansson ◽  
P. H. Nilsson ◽  
R. Ohlsson ◽  
B. G. Rose´n

Demands for decreased environmental impact from vehicles are resulting in a strong push for decreased engine oil, fuel consumption and weight. New machining and coating technologies have offered ways to attack these problems. Engine oil and fuel consumption are to a great extent controlled by the topography of the cylinder liner surface and it is therefore important to optimise this surface. Recent engine tests have shown a reduction in oil consumption when using cylinder liners with a smoother finish than that given by the current plateau honing. However, engine manufacturers are hesitant to introduce smoother liner surfaces because of fears of severe wear and scuffing. There is also the possibility that smoother liner surfaces may be more sensitive to the choice of piston ring finishes. This paper therefore seeks to investigate the functional performance and resistance to wear of these smooth cylinder liners and the mating top ring surfaces.


Sign in / Sign up

Export Citation Format

Share Document