Compacted Graphite Irons - High Quality Engineering Materials in the Cast Iron Family

1984 ◽  
Author(s):  
I. C. H. Hughes ◽  
J. Powell
Alloy Digest ◽  
1980 ◽  
Vol 29 (3) ◽  

Abstract AMPCOLOY 570 is a cast copper-nickel-aluminum-cobalt-iron alloy specially developed for applications involving severe stresses and high temperatures, such as glass-making molds and plate-glass rolls. It is significantly superior to cast iron which has been commonly used for glass-making molds. Good foundry techniques will yield high-quality castings of Ampcoloy 570 in a wide range of section sizes. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on high temperature performance and corrosion resistance as well as casting, heat treating, machining, and joining. Filing Code: Cu-392. Producer or source: Ampco Metal Inc..


Carbon ◽  
2021 ◽  
Author(s):  
Chaoling Xu ◽  
Tim Wigger ◽  
Mohammed A. Azeem ◽  
Tito Andriollo ◽  
Søren Fæster ◽  
...  
Keyword(s):  
X Ray ◽  

Author(s):  
N.N. Aleksandrov ◽  
N.S. Gushchin ◽  
N.F. Nuraliev

New high-tech spheroidal graphite chromium-nickel cast iron with improved as-cast properties is developed. The technological advantages of the new alloy are shown in comparison with foreign cast iron of the type Nihard-4. High-quality castings of grinding elements made of new domestic wear -resistant cast iron are made in the conditions of Russian plants using the developed technology. Medium-speed coal grinding mills equipped with these grinding elements have successfully passed the operational test at domestic and foreign thermal power plants. The technical and economic advantages of the new technology in comparison with foreign ones are shown, which made it possible to guarantee the stable production of high-quality wear-resistant massive castings of complex c onfi guration using domestic materials under the conditions of Russian plan.


Metallurgist ◽  
1970 ◽  
Vol 14 (2) ◽  
pp. 112-114
Author(s):  
A. V. Monaenkov ◽  
I. V. Myslivtsev ◽  
Yu. I. Ruzhal'skii ◽  
A. P. Usachev ◽  
I. A. Ushkov
Keyword(s):  

2019 ◽  
Vol 50 (8) ◽  
pp. 3697-3704
Author(s):  
Wu Yue ◽  
Li Jianping ◽  
Yang Zhong ◽  
Guo Yongchun ◽  
Ma Zhijun ◽  
...  

2018 ◽  
Vol 925 ◽  
pp. 90-97 ◽  
Author(s):  
Juan Carlos Hernando ◽  
Attila Diószegi

It is widely accepted that in most commercial hypoeutectic alloys, both static mechanical properties and feeding characteristics during solidification, are extremely linked to the coarseness of the primary phase. It is therefore of critical importance to provide tools to control and predict the coarsening process of the dendritic phase present in hypoeutectic melts. The characterization of the primary phase, a product of the primary solidification, has traditionally been neglected when compared to the eutectic solidification characterization in cast iron investigations. This work presents the morphological evolution of the primary austenite present in a hypoeutectic compacted graphite cast iron (CGI) under isothermal conditions. To that purpose, a base spheroidal graphite cast iron (SGI) material with high Mg content is re-melted in a controlled atmosphere and reversed into a CGI melt by controlling the Mg fading. An experimental isothermal profile is applied to the solidification process of the experimental alloy to promote an isothermal coarsening process of the primary austenite dendrite network during solid and liquid coexistence. Through interrupted solidification experiments, the primary austenite is preserved and observed at room temperature. By application of stereological relations, the primary phase and its isothermal coarsening process are characterized as a function of the coarsening time applied. The microstructural evolution observed in the primary austenite in CGI and the measured morphological parameters show a similar trend to that observed for lamellar graphite cast iron (LGI) in previous investigations. The modulus of the primary austenite, Mγ, and the nearest distance between the centre of gravity of neighbouring austenite particles, Dγ, followed a linear relation with the cube root of coarsening time.


2020 ◽  
Vol 14 (3) ◽  
pp. 846-852
Author(s):  
Primož Mrvar ◽  
Sebastjan Kastelic ◽  
Milan Terčelj ◽  
Mitja Petrič ◽  
Branko Bauer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document