Study of Fracture Behavior of Cord-Rubber Composites for Lab Prediction of Structural Durability of Aircraft Tires II. Fatigue Damage Accumulation of Bias Carcass

1992 ◽  
Author(s):  
B. L. Lee ◽  
J. A. Smith ◽  
J. P. Medzorian ◽  
M. Chawla ◽  
P. C. Ulrich
1999 ◽  
Vol 27 (1) ◽  
pp. 48-57 ◽  
Author(s):  
Y. Liu ◽  
Z. Wan ◽  
Z. Tian ◽  
X. Du ◽  
J. Jiang ◽  
...  

Abstract A fatigue testing system is established with which the real-time recording of stress, strain, temperature, and hysteresis loss of rubbers or cord-rubber composite specimens subjected to periodic loading or extension can be successfully carried out. Several problems are connected with the experimental study of the fatigue of rubber composites. In constant extension cycling, the specimen becomes relaxed because of the viscoelasticity of rubber composites, and the imposed tension-tension deformation becomes complex. In this method, the specimen is unlikely to fail unless the imposed extensions are very large. Constant load cycling can avoid the shortcomings of constant extension cycling. The specially designed clamps ensure that the specimen does not slip when the load retains a constant value. The Deformation and fatigue damage accumulation processes of rubber composites under periodic loading are also examined. Obviously, the effect of cycle frequency on the fatigue life of rubber composites can not be ignored because of the viscoelasticity of constituent materials. The increase of specimen surface temperature is relatively small in the case of 1 Hz, but the temperature can easily reach 100°C at the 8 Hz frequency. A method for evaluating the fatigue behavior of tires is proposed.


2004 ◽  
Vol 46 (6) ◽  
pp. 309-313
Author(s):  
Yutaka Iino ◽  
Hideo Yano

2013 ◽  
Vol 81 (4) ◽  
Author(s):  
Son Hai Nguyen ◽  
Mike Falco ◽  
Ming Liu ◽  
David Chelidze

Estimating and tracking crack growth dynamics is essential for fatigue failure prediction. A new experimental system—coupling structural and crack growth dynamics—was used to show fatigue damage accumulation is different under chaotic (i.e., deterministic) and stochastic (i.e., random) loading, even when both excitations possess the same spectral and statistical signatures. Furthermore, the conventional rain-flow counting method considerably overestimates damage in case of chaotic forcing. Important nonlinear loading characteristics, which can explain the observed discrepancies, are identified and suggested to be included as loading parameters in new macroscopic fatigue models.


1984 ◽  
Vol 110 (11) ◽  
pp. 2585-2601 ◽  
Author(s):  
Loren D. Lutes ◽  
Miguel Corazao ◽  
Sau‐lon James Hu ◽  
James Zimmerman

Sign in / Sign up

Export Citation Format

Share Document