A Numerical Simulation of Intake Port Phenomena in a Spark Ignition Engine Under Cold Starting Conditions

1994 ◽  
Author(s):  
Sergei M. Schurov ◽  
Nick Collings
Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 779
Author(s):  
Ashraf Elfasakhany

Biofuels are receiving increased scientific attention, and recently different biofuels have been proposed for spark ignition engines. This paper presents the state of art of using biofuels in spark ignition engines (SIE). Different biofuels, mainly ethanol, methanol, i-butanol-n-butanol, and acetone, are blended together in single dual issues and evaluated as renewables for SIE. The biofuels were compared with each other as well as with the fossil fuel in SIE. Future biofuels for SIE are highlighted. A proposed method to reduce automobile emissions and reformulate the emissions into new fuels is presented and discussed. The benefits and weaknesses of using biofuels in SIE are summarized. The study established that ethanol has several benefits as a biofuel for SIE; it enhanced engine performance and decreased pollutant emissions significantly; however, ethanol showed some drawbacks, which cause problems in cold starting conditions and, additionally, the engine may suffer from a vapor lock situation. Methanol also showed improvements in engine emissions/performance similarly to ethanol, but it is poisonous biofuel and it has some sort of incompatibility with engine materials/systems; its being miscible with water is another disadvantage. The lowest engine performance was displayed by n-butanol and i-butanol biofuels, and they also showed the greatest amount of unburned hydrocarbons (UHC) and CO emissions, but the lowest greenhouse effect. Ethanol and methanol introduced the highest engine performance, but they also showed the greatest CO2 emissions. Acetone introduced a moderate engine performance and the best/lowest CO and UHC emissions. Single biofuel blends are also compared with dual ones, and the results showed the benefits of the dual ones. The study concluded that the next generation of biofuels is expected to be dual blended biofuels. Different dual biofuel blends are also compared with each other, and the results showed that the ethanol–methanol (EM) biofuel is superior in comparison with n-butanol–i-butanol (niB) and i-butanol–ethanol (iBE).


2004 ◽  
Vol 126 (3) ◽  
pp. 635-644 ◽  
Author(s):  
Yangbing Zeng ◽  
C. F. Lee

A numerical study has been performed of the air/fuel preparation process in a cold-starting port-injected spark-ignition engine. The latest models were implemented for spray impingement and multicomponent vaporization of the droplet and wall film accounting for finite diffusion in the liquid. The infinite diffusion model was found insufficient for predicting vaporization in this engine, and the single-component fuel representation yields results significantly different from those from the multicomponent one. The operating parameters studied included injection timing, swirl, speed, target path, enrichment, and fuel accumulation. In-cylinder measurements were compared and good agreement was achieved. Detailed quantitative analysis of the air/fuel preparation of the engine was reported.


Energies ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1330 ◽  
Author(s):  
Nguyen Xuan Khoa ◽  
Ocktaeck Lim

In this research, the residual gas, peak firing pressure increase, and effective release energy were completely investigated. To obtain this target, the experimental system is installed with a dynamo system and a simulation model was setup. Through combined experimental and simulation methods, the drawbacks of the hardware optimization method were eliminated. The results of the research show that the valve port diameter-bore ratio (VPD/B) has a significant effect on the residual gas, peak firing pressure increase, and effective release energy of a four-stroke spark ignition engine. In this research, the engine was performed at 3000 rpm and full load condition. Following increased IPD/B ratio of 0.3–0.5. The intake port and exhaust port diameter has a contrary effect on engine volumetric efficiency, the residual gas ratio increase 27.3% with larger intake port and decrease 18.6% with larger exhaust port. The engine will perform optimal thermal efficiency when the trapped residual gas fraction ratio is from 13% to 14%. The maximum effective release energy was 0.45 kJ at 0.4 intake port-bore ratio, and 0.451 kJ at 0.35 exhaust port-bore ratio. The NOx emission increases until achieved a maximum value after that decrease even VPD/B was still increasing. With a VPD/B ratio of 0.35 to 0.4, the engine works without the misfiring.


2005 ◽  
Vol 128 (2) ◽  
pp. 397-402 ◽  
Author(s):  
Jim S. Cowart

During port-fuel–injected (PFI) spark-ignition (SI) engine startup and warm-up fuel accounting continues to be a challenge. Excess fuel must be injected for a near stoichiometric combustion charge. The “extra” fuel that does not contribute to the combustion process may stay in the intake port or as liquid films on the combustion chamber walls. Some of this combustion chamber wall liquid fuel is transported to the engine’s oil sump and some of this liquid fuel escapes combustion and evolves during the expansion and exhaust strokes. Experiments were performed to investigate and quantify this emerging in-cylinder fuel vapor post-combustion cycle by cycle during engine startup. It is believed that this fuel vapor is evaporating from cylinder surfaces and emerging from cylinder crevices. A fast in-cylinder diagnostic, the fast flame ionization detector, was used to measure this behavior. Substantial post-combustion fuel vapor was measured during engine startup. The amount of post-combustion fuel vapor that develops relative to the in-cylinder precombustion fuel charge is on the order of one for cold starting (0 °C) and decreases to ∼13 for hot starting engine cycles. Fuel accounting suggests that the intake port puddle forms quickly, over the first few engine cranking cycles. Analysis suggests that sufficient charge temperature and crevice oxygen exists to at least partially oxidize the majority of this post-combustion fuel vapor such that engine out hydrocarbons are not excessive.


2001 ◽  
Vol 34 (1) ◽  
pp. 283-288
Author(s):  
I. Arsie ◽  
C. Pianese ◽  
G. Rizzo ◽  
V. Cioffi

Sign in / Sign up

Export Citation Format

Share Document