The Effects of Rapeseed Oil Methyl Ester on Diesel Engine Performance, Exhaust Emissions and Long-Term Behavior - A Summary of Three Years of Experimentation

1995 ◽  
Author(s):  
Frédéric Staat ◽  
Paul Gateau
2010 ◽  
Vol 14 (4) ◽  
pp. 957-964 ◽  
Author(s):  
Sharanappa Godiganur ◽  
Suryanarayana Murthy ◽  
Prathap Reddy

2020 ◽  
Vol 24 (1) ◽  
pp. 72-87 ◽  
Author(s):  
Sara Tayari ◽  
Reza Abedi ◽  
Ali Abedi

AbstractMicroalgae have been mentioned as a promising feedstock for biodiesel production. In this study, microalgae Chlorella vulgaris (MCV) was cultivated in a bioreactor with wastewater. After biodiesel production from MCV oil via transesterification reaction, chemical and physical properties of MCV methyl ester were evaluated with regular diesel and ASTM standard. Besides, engine performance and exhaust emissions of CI engine fuelled with the blends of diesel-biodiesel were measured. The GC-MS analysis showed that oleic and linoleic acids were the main fatty acid compounds in the MCV methyl ester. Engine test results revealed that the use of biodiesel had led to a major decrease in CO and HC emissions and a modest reduction in CO2 emissions, whereas there was a minor increase in NOx emissions. Furthermore, there was a slight decrease in the engine power and torque while a modest increase in brake specific fuel consumption which are acceptable due to exhaust emissions reduction. The experimental results illustrate considerable capabilities of applied MVC biodiesel as an alternative fuel in diesel engines to diminish the emissions.


Transport ◽  
2014 ◽  
Vol 29 (4) ◽  
pp. 440-448 ◽  
Author(s):  
Tomas Mickevičius ◽  
Stasys Slavinskas ◽  
Slawomir Wierzbicki ◽  
Kamil Duda

This paper presents a comparative analysis of the diesel engine performance and emission characteristics, when operating on diesel fuel and various diesel-biodiesel (B10, B20, B40, B60) blends, at various loads and engine speeds. The experimental tests were performed on a four-stroke, four-cylinder, direct injection, naturally aspirated, 60 kW diesel engine D-243. The in-cylinder pressure data was analysed to determine the ignition delay, the Heat Release Rate (HRR), maximum in-cylinder pressure and maximum pressure gradients. The influence of diesel-biodiesel blends on the Brake Specific Fuel Consumption (bsfc) and exhaust emissions was also investigated. The bench test results showed that when the engine running on blends B60 at full engine load and rated speed, the autoignition delay was 13.5% longer, in comparison with mineral diesel. Maximum cylinder pressure decreased about 1–2% when the amount of Rapeseed Methyl Ester (RME) expanded in the diesel fuel when operating at full load and 1400 min–1 speed. At rated mode, the minimum bsfc increased, when operating on biofuel blends compared to mineral diesel. The maximum brake thermal efficiency sustained at the levels from 0.3% to 6.5% lower in comparison with mineral diesel operating at full (100%) load. When the engine was running at maximum torque mode using diesel – RME fuel blends B10, B20, B40 and B60 the total emissions of nitrogen oxides decreased. At full and moderate load, the emission of carbon monoxide significantly raised as the amount of RME in fuel increased.


Sign in / Sign up

Export Citation Format

Share Document