scholarly journals Investigation on Physicochemical Properties of Wastewater Grown Microalgae Methyl Ester and its Effects on CI Engine

2020 ◽  
Vol 24 (1) ◽  
pp. 72-87 ◽  
Author(s):  
Sara Tayari ◽  
Reza Abedi ◽  
Ali Abedi

AbstractMicroalgae have been mentioned as a promising feedstock for biodiesel production. In this study, microalgae Chlorella vulgaris (MCV) was cultivated in a bioreactor with wastewater. After biodiesel production from MCV oil via transesterification reaction, chemical and physical properties of MCV methyl ester were evaluated with regular diesel and ASTM standard. Besides, engine performance and exhaust emissions of CI engine fuelled with the blends of diesel-biodiesel were measured. The GC-MS analysis showed that oleic and linoleic acids were the main fatty acid compounds in the MCV methyl ester. Engine test results revealed that the use of biodiesel had led to a major decrease in CO and HC emissions and a modest reduction in CO2 emissions, whereas there was a minor increase in NOx emissions. Furthermore, there was a slight decrease in the engine power and torque while a modest increase in brake specific fuel consumption which are acceptable due to exhaust emissions reduction. The experimental results illustrate considerable capabilities of applied MVC biodiesel as an alternative fuel in diesel engines to diminish the emissions.

Fuel ◽  
2011 ◽  
Vol 90 (8) ◽  
pp. 2782-2789 ◽  
Author(s):  
Thomas T. Kivevele ◽  
Lukács Kristóf ◽  
Ákos Bereczky ◽  
Makame M. Mbarawa

2018 ◽  
Vol 8 (1) ◽  
pp. 121-127 ◽  
Author(s):  
Tanzer Eryilmaz

In this study, the methyl ester production process from neutralized waste cooking oils is optimized by using alkali-catalyzed (KOH) single-phase reaction. The optimization process is performed depending on the parameters, such as catalyst concentration, methanol/oil ratio, reaction temperature and reaction time. The optimum methyl ester conversion efficiency was 90.1% at the optimum conditions of 0.7 wt% of potassium hydroxide, 25 wt% methanol/oil ratio, 90 min reaction time and 60°C reaction temperature. After the fuel characteristics of the methyl ester obtained under optimum conditions were determined, the effect on engine performance, CO and NOx emissions of methyl ester was investigated in a diesel engine with a single cylinder and direct injection. When compared to diesel fuel, engine power and torque decreased when using methyl ester, and specific fuel consumption increased. NOx emission increases at a rate of 18.4% on average through use of methyl ester.


Author(s):  
F. Maroteaux ◽  
G. Descombes ◽  
F. Sauton

Abstract This research investigates engine performance and the potential of reducing exhaust emissions by using Dimethyl Ether (DME) which is an alternative fuel for diesel engines. The objective of this study it to evaluate (on the bed test) the performance and emissions reduction potential of an engine running with DME. A 4 cylinder passenger car HSDI Common Rail turbocharged diesel engine without specific modifications was used. The results obtained on this engine running with DME using diesel fuel as reference are encouraging. In the next steps of this study the injection rate will be adapted to DME operation and to the geometric and thermodynamic conditions of the combustion reaction. A study of the combustion reaction is also necessary in order to optimize the turbocharging system to exclusive DME operation.


2016 ◽  
Vol 20 (suppl. 4) ◽  
pp. 1029-1035 ◽  
Author(s):  
Senthil Ramalingam ◽  
Manikandan Radhakrishnan ◽  
Silambarasan Rajendran ◽  
Ratchagaraja Dhairiyasamy

2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Bjorn S. Santos ◽  
Sergio C. Capareda ◽  
Jewel A. Capunitan

Biodiesel from sunflower oil offers a potential as an alternative to petroleum-based diesel fuel and must be evaluated in terms of the resulting engine performance and exhaust emissions. Two diesel engines rated at 14.2 kW (small) and 60 kW (large) were operated on pure sunflower methyl ester (SFME) and its blends with a reference diesel (REFDIESEL). Results showed that less power and torque were delivered by both the small and large engines when ran on pure SFME than on REFDIESEL, while brake-specific fuel consumption (BSFC) was found to be higher in pure SFME. Blends of SFME with REFDIESEL (B5 and B20) showed negligible power loss and similar BSFC with the REFDIESEL. Higher concentrations of nitrogen oxides (), carbon dioxide (CO2), and total hydrocarbons (THC) in the exhaust emissions were observed for both pure SFME and SFME-REFDIESEL fuel blends. Comparison with soybean methyl ester indicates similar engine performance. Thus, blends of SFME with diesel may be used as a supplemental fuel for steady-state nonroad diesel engines to take advantage of the lubricity of biodiesel as well as contributing to the goal of lowering the dependence to petroleum diesel.


Sign in / Sign up

Export Citation Format

Share Document