The Development and Application of a Diesel Ignition and Combustion Model for Multidimensional Engine Simulation

Author(s):  
Song-Charng Kong ◽  
Zhiyu Han ◽  
Rolf D. Reitz
1999 ◽  
Vol 121 (2) ◽  
pp. 243-248 ◽  
Author(s):  
D. M. Costura ◽  
P. B. Lawless ◽  
S. H. Fankel

A dynamic combustor model is developed for inclusion into a one-dimensional full gas turbine engine simulation code. A flux-difference splitting algorithm is used to numerically integrate the quasi-one-dimensional Euler equations, supplemented with species mass conservation equations. The combustion model involves a single-step, global finite-rate chemistry scheme with a temperature-dependent activation energy. Source terms are used to account for mass bleed and mass injection, with additional capabilities to handle momentum and energy sources and sinks. Numerical results for cold and reacting flow for a can-type gas turbine combustor are presented. Comparisons with experimental data from this combustor are also made.


Author(s):  
Fengjun Yan ◽  
Junmin Wang

This paper explores the possibility of using a cost-effective air-path system that includes a dual-loop (exhaust gas recirculation) EGR and a (variable geometry turbocharger) VGT to achieve independent control of the main in-cylinder charge conditions (i.e. in-cylinder oxygen, inert gas amounts, and gas temperature at the intake valve closing) for HCCI engine combustion transient operation. An engine simulation model consisting of the air-path system and a HCCI combustion model was developed and synthesized to evaluate the control authority of the air-path system on the in-cylinder charge conditions as well as their effects on combustion. A variety of simulations unveiled that such an air-path system can enable independent control of the main in-cylinder charge conditions and active compensation of the effects of the wall temperature variations on HCCI combustion.


1993 ◽  
Vol 115 (4) ◽  
pp. 781-789 ◽  
Author(s):  
S.-C. Kong ◽  
R. D. Reitz

Ignition and combustion mechanisms in diesel engines were studied using the KIVA code, with modifications to the combustion, heat transfer, crevice flow, and spray models. A laminar-and-turbulent characteristic-time combustion model that has been used successfully for spark-ignited engine studies was extended to allow predictions of ignition and combustion in diesel engines. A more accurate prediction of ignition delay was achieved by using a multistep chemical kinetics model. The Shell knock model was implemented for this purpose and was found to be capable of predicting successfully the autoignition of homogeneous mixtures in a rapid compression machine and diesel spray ignition under engine conditions. The physical significance of the model parameters is discussed and the sensitivity of results to the model constants is assessed. The ignition kinetics model was also applied to simulate the ignition process in a Cummins diesel engine. The post-ignition combustion was simulated using both a single-step Arrhenius kinetics model and also the characteristic-time model to account for the energy release during the mixing-controlled combustion phase. The present model differs from that used in earlier multidimensional computations of diesel ignition in that it also includes state-of-the-art turbulence and spray atomization models. In addition, in this study the model predictions are compared to engine data. It is found that good levels of agreement with the experimental data are obtained using the multistep chemical kinetics model for diesel ignition modeling. However, further study is needed of the effects of turbulent mixing on post-ignition combustion.


Author(s):  
Guowei Li ◽  
Tim Lennox ◽  
Dale Goudie ◽  
Mark Dunn

CFD Modeling of the injection, the mixing, the combustion and the emission formation processes in a high pressure direct injection (HPDI) natural gas engine is presented in this paper. KIVA3V was used together with an injector model. Two sub-models had been developed that the concurrent injection, ignition and combustion of natural gas and diesel could be simulated. The gas injection was simulated with the injector model. In the injector model, the electromagnetism, the hydraulics and the mechanics were computed by solving a set of ordinary differential equations. Based on the engine experimental data, a combustion model was built in which premixed combustion of natural gas was excluded and the natural gas ignition was initiated by the pilot diesel combustion rather than a spontaneous process. The model calibration and validation are discussed. The model parameters were tuned against one set of engine test data. For the model validation, 30 engine test data were applied. The data were from HPDI engine tests at varied engine speeds, loads and injection timings with and without EGR. The model gave good agreement with the engine tests having no EGR. However, the model, in general, under-predicted the burning rate. With EGR, the model prediction errors were large and the NOx were under-predicted, though the trends were still captured.


2021 ◽  
Vol 26 (2) ◽  
pp. 143-159
Author(s):  
M. Mirzaei ◽  
S.M. Hashemi ◽  
B. Saranjam ◽  
A. Binesh

Abstract An axial vane rotary engine (AVRE) is a novel type of rotary engines. The engine is a positive displacement mechanism that permits the four “stroke” action to occur in one revolution of the shaft with a minimum number of moving components in comparison to reciprocating engines. In this paper, a two-zone combustion model is developed for a spark ignition AVRE. The combustion chamber is divided into burned and unburned zones and differential equations are developed for the change in pressure and change in temperature in each zone. The modelling is based on equations for energy and mass conservation, equation of state, and burned mass fraction. The assumption is made that both zones are at the same pressure P, and the ignition temperature is the adiabatic flame temperature based on the mixture enthalpy at the onset of combustion. The developed code for engine simulation in MATLAB is applied to another engine and there is a good agreement between results of this code and results related to the engine chosen for validation, so the modelling is independent of configuration.


Author(s):  
Tae-Kyung Lee ◽  
Zoran S. Filipi

Control oriented model (COM) using crank-angle resolved flame propagation simulation and nonlinear model predictive control (NMPC) methodology for the purpose of transient control of HDOF engines are proposed in this paper. The nonlinear nature of the combustion process has been a challenge in building a reliable COM and engine simulation. Artificial neural networks (ANNs) are subsequently trained on the data generated with a quasi-D combustion model to create fast surrogate combustion models. System dynamics are augmented by manifold and actuator dynamics models. Then, NMPC for an internal combustion (IC) engine with a dual-independent variable valve timing (VVT) system is designed to achieve fast torque responses, to eliminate exhaust emissions penalty, and to track the optimal actuator response closely. The NMPC significantly improves engine dynamics and minimizes excursions of in-cylinder variables under highly transient operation. Dead-beat like control is achieved with selected prediction horizon and control horizon in the NMPC.


Author(s):  
Anand Karpatne ◽  
Vivek Subramaniam ◽  
Sachin Joshi ◽  
Xiao Qin ◽  
Douglas Breden ◽  
...  

Abstract Combustion and emission performance of internal combustion (IC) engines depend on the ability of the ignition system to provide an ignition kernel that can successfully transition into an early flame kernel. Several key physical phenomena such as flow physics, plasma dynamics, circuit transients, and electromagnetics influence the behavior of the spark. The combustion kinetics decide the eventual transition of the spark into a self-sustaining flame kernel. The goal of this paper is to present a feasibility study involving the integration of a high-fidelity magnetohydrodynamic description of the spark physics with a finite rate chemical kinetics-based combustion model. A future goal of this proposed framework will be to model and validate a coupled ignition and combustion simulation for spark ignited engines. Two separate solvers are used to model spark physics and combustion kinetics respectively, and a coupling strategy is developed to model different aspects of physics occurring at disparate time-scales. This approach provides a physically consistent estimate of the electrical energy distribution within the spark-gap under high cross-flow velocities. When provided with certain favorable in-cylinder conditions, the spark kernel triggers self-sustained combustion.


Sign in / Sign up

Export Citation Format

Share Document