Optimum Design of Anti-Siphon Device used to Prevent Cerebrospinal Fluid from Overdraining

2003 ◽  
Vol 17 (08n09) ◽  
pp. 1374-1380
Author(s):  
Jong Yun Jang ◽  
Chong Sun Lee ◽  
Chang Min Suh

The present study investigated design parameters of an anti-siphon device used with shunt valves to treat patients with hydrocephalus. Structural analyses were performed to understand roles of design variables and optimize performance of the diaphragm-type anti-siphon device (hereafter referred to as the ASD). Experiments were performed on the lab-made product and showed good agreements with the numerical simulations. Using the simulations, we were able to design a more physiological ASD which gave equal opening pressures in both supine and upright postures. Tissue encapsulization phenomenon was also simulated and the results indicated underdrainage of CSF in the upright position of the patient.

Author(s):  
Masao Arakawa ◽  
Hiroshi Yamakawa

Abstract In this study, we summerize the method of fuzzy optimization using fuzzy numbers as design variables. In order to detect flaw in fuzzy calculation, we use LR-fuzzy numbers, which is known as its simplicity in calculation. We also use simple fuzzy numbers’ operations, which was proposed in the previous papers. The proposed method has unique characteristics that we can obtain fuzzy sets in design variables (results of the design) directly from single numerical optimizing process. Which takes a large number of numerical optimizing processes when we try to obtain similar results in the conventional methods. In the numerical examples, we compare the proposed method with several other methods taking imprecision in design parameters into account, and demonstrate the effectiveness of the proposed method.


2021 ◽  
Vol 9 (3B) ◽  
Author(s):  
Bertan Beylergil ◽  

Fiber reinforced composites have been widely used in automotive industry since they offer significant weight reduction, low manufacturing and tooling cost, and better integration of parts compared to metal counterparts. In this study, design optimization of a hybrid aluminum/composite drive shaft subjected to torsion was carried out using ANSYS Workbench with ACP module. The numerical validation of finite element (FE) model was carried out by means of theoretical, experimental, and numerical studies in the literature. The ply material, lay-up orientations, and thickness of aluminum layer were considered as design variables. The geometric parameters in design were the length and inner diameter of the drive shaft. Two important design constraints, the minimum first mode natural frequency and design torque, were considered to satisfy the design requirements of a rear-wheel drive shaft used in automotive industry. The optimum design variables were determined by using screening method. The optimum design parameters (length, inner diameter, ply angle, and material) were presented in tabular form. Compared to nonoptimized scenario, the optimized solution reduced the cost of the hybrid composite drive shaft about 30% without ignoring the design requirements.


10.29007/2k64 ◽  
2018 ◽  
Author(s):  
Pat Prodanovic ◽  
Cedric Goeury ◽  
Fabrice Zaoui ◽  
Riadh Ata ◽  
Jacques Fontaine ◽  
...  

This paper presents a practical methodology developed for shape optimization studies of hydraulic structures using environmental numerical modelling codes. The methodology starts by defining the optimization problem and identifying relevant problem constraints. Design variables in shape optimization studies are configuration of structures (such as length or spacing of groins, orientation and layout of breakwaters, etc.) whose optimal orientation is not known a priori. The optimization problem is solved numerically by coupling an optimization algorithm to a numerical model. The coupled system is able to define, test and evaluate a multitude of new shapes, which are internally generated and then simulated using a numerical model. The developed methodology is tested using an example of an optimum design of a fish passage, where the design variables are the length and the position of slots. In this paper an objective function is defined where a target is specified and the numerical optimizer is asked to retrieve the target solution. Such a definition of the objective function is used to validate the developed tool chain. This work uses the numerical model TELEMAC- 2Dfrom the TELEMAC-MASCARET suite of numerical solvers for the solution of shallow water equations, coupled with various numerical optimization algorithms available in the literature.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1430
Author(s):  
Aleksandr Viatkin ◽  
Riccardo Mandrioli ◽  
Manel Hammami ◽  
Mattia Ricco ◽  
Gabriele Grandi

This paper presents a comprehensive study of peak-to-peak and root-mean-square (RMS) values of AC current ripples with balanced and unbalanced fundamental currents in a generic case of three-phase four-leg converters with uncoupled AC interface inductors present in all three phases and in neutral. The AC current ripple characteristics were determined for both phase and neutral currents, considering the sinusoidal pulse-width modulation (SPWM) method. The derived expressions are simple, effective, and ready for accurate AC current ripple calculations in three- or four-leg converters. This is particularly handy in the converter design process, since there is no need for heavy numerical simulations to determine an optimal set of design parameters, such as switching frequency and line inductances, based on the grid code or load restrictions in terms of AC current ripple. Particular attention has been paid to the performance comparison between the conventional three-phase three-leg converter and its four-leg counterpart, with distinct line inductance values in the neutral wire. In addition to that, a design example was performed to demonstrate the power of the derived equations. Numerical simulations and extensive experimental tests were thoroughly verified the analytical developments.


1999 ◽  
Vol 122 (1) ◽  
pp. 280-287 ◽  
Author(s):  
Hiromu Hashimoto ◽  
Yasuhisa Hattori

The aim of this paper is to develop a general methodology for the optimum design of magnetic head sliders in improving the spacing characteristics between a slider and disk surface under static and dynamic operating conditions of hard disk drives and to present an application of the methodology to the IBM 3380-type slider design. To generate the optimal design variables, the objective function is defined as the weighted sum of the minimum spacing, the maximum difference in the spacing due to variation of the radial location of the head, and the maximum amplitude ratio of the slider motion. Slider rail width, taper length, taper angle, suspension position, and preload are selected as the design variables. Before the optimization of the head, the effects of these five design variables on the objective function are examined by a parametric study, and then the optimum design variables are determined by applying the hybrid optimization technique, combining the direct search method and successive quadratic programming. From the obtained results, the effectiveness of optimum design on the spacing characteristics of magnetic heads is clarified. [S0742-4787(00)03701-2]


1996 ◽  
Author(s):  
Monier B. Botros ◽  
Bashar S. AbdulNour ◽  
Todd E. Smith ◽  
Ming-Chia Lia

Author(s):  
Ameya K. Naik ◽  
Raghunath S. Holambe

An outline is presented for construction of wavelet filters with compact support. Our approach does not require any extensive simulations for obtaining the values of design variables like other methods. A unified framework is proposed for designing halfband polynomials with varying vanishing moments. Optimum filter pairs can then be generated by factorization of the halfband polynomial. Although these optimum wavelets have characteristics close to that of CDF 9/7 (Cohen-Daubechies-Feauveau), a compact support may not be guaranteed. Subsequently, we show that by proper choice of design parameters finite wordlength wavelet construction can be achieved. These hardware friendly wavelets are analyzed for their possible applications in image compression and feature extraction. Simulation results show that the designed wavelets give better performances as compared to standard wavelets. Moreover, the designed wavelets can be implemented with significantly reduced hardware as compared to the existing wavelets.


Author(s):  
Yasuhisa Hattori ◽  
Hiromu Hashimoto ◽  
Masayuki Ochiai

Abstract The aim of this paper is to develop the general methodology for the optimum design of magnetic head slider for improving the spacing characteristics between head slider and disk surfaces under the static and dynamic operation conditions of hard disk drive and to present an application of the methodology to IBM 3380-type slider design. In the optimum design, the objective function is defined as the weighted sum of minimum spacing, maximum difference of spacing due to variation of radial location of head and maximum amplitude ratio of slider motion. Slider rail width, taper length, taper angle, suspension position and preload are selected as the design variables. Before the optimization of magnetic head slider, the effects of these five design variables on the objective function are examined by the parametric study, and then the optimum design variables are determined by applying the hybrid optimization technique combining the direct search method and the successive quadratic programming (SQP). From the results obtained, the effectiveness of optimum design on the spacing characteristics of magnetic head slider is clarified.


2021 ◽  
Author(s):  
Domenico Tommasino ◽  
Matteo Bottin ◽  
Giulio Cipriani ◽  
Alberto Doria ◽  
Giulio Rosati

Abstract In robotics the risk of collisions is present both in industrial applications and in remote handling. If a collision occurs, the impact may damage both the robot and external equipment, which may result in successive imprecise robot tasks or line stops, reducing robot efficiency. As a result, appropriate collision avoidance algorithms should be used or, if it is not possible, the robot must be able to react to impacts reducing the contact forces. For this purpose, this paper focuses on the development of a special end-effector that can withstand impacts and is able to protect the robot from impulsive forces. The novel end-effector is based on a bi-stable mechanism that decouples the dynamics of the end-effector from the dynamics of the robot. The intrinsically non-linear behavior of the end-effector is investigated with the aid of numerical simulations. The effect of design parameters and the operating conditions are analyzed and the interaction between the functioning of the bi-stable mechanism and the control system is studied. In particular, the effect of the mechanism in different scenarios characterized by different robot velocities is shown. Results of numerical simulations assess the validity of the proposed end-effector, which can lead to large reductions in impact forces.


Author(s):  
Sayed M. Metwalli ◽  
M. Alaa Radwan ◽  
Abdel Aziz M. Elmeligy

Abstract The convensional procedure of helical torsion spring design is an iterative process because of large number of requirements and relations that are to be attained once at a time. The design parameters are varied at random until the spring design satisfies performance requirements. A CAD of the spring for minimum weight is formulated with and without the variation of the maximum normal stress with the wire diameter. The CAD program solves by employing the method of Lagrange-Multipliers. The optimal parameters, in a closed form are obtained, normalized and plotted. These explicit relations of design variables allow direct evaluation of optimal design objective and hence, an absolute optimum could be achieved. The comparison of optimum results with those previously published, shows a pronounced achievement in the reduction of torsion spring weight.


Sign in / Sign up

Export Citation Format

Share Document