Simulation and Modeling of an A/C Rotary Vane Compressor

1997 ◽  
Author(s):  
S. Takeshita
2018 ◽  
Author(s):  
José Carlos Pedro ◽  
David E. Root ◽  
Jianjun Xu ◽  
Luís Cótimos Nunes

This book provides students and researchers in fluid engineering with an up-to-date overview of turbulent flow research in the areas of simulation and modeling. A key element of the book is the systematic, rational development of turbulence closure models and related aspects of modern turbulent flow theory and prediction. Starting with a review of the spectral dynamics of homogenous and inhomogeneous turbulent flows, succeeding chapters deal with numerical simulation techniques, renormalization group methods and turbulent closure modeling. Each chapter is authored by recognized leaders in their respective fields, and each provides a thorough and cohesive treatment of the subject.


2003 ◽  
Author(s):  
Yuan Mao Huang ◽  
Sheng An Yang

This study introduces an experimental method that can measure air pressures in the vane segments when a sliding-vane rotary compressor performs suction and compression phases in stable or unstable rotational speeds. When the air pressures of these two phases can be measured, the intake effect of the compressor’s inlet and the seal effect of the vane segments can be evaluated, respectively. Because a frequency converter provides unstable rotational speeds when it controls rotational speeds of a motor with a compressor, an encoder mounted on the output shaft of the motor was applied to record the angular location of the compressor rotor. Two strain gauge type pressure transducers were inserted into the cover plate of the compressor to measure air pressures in the vane segments. Comparing the signals of the encoder with pressure transducers, the air pressures in completions of suction and compression phases could be determined in stable or unstable rotational speeds. The air pressures when the compressor performed suction and compression phases were 99.5 kPa and 153 kPa, respectively, in 1400 rpm. The air pressure when the compressor performed suction phase decreased with the rotational speed faster than 800 rpm. The size or shape of the inlet port of the compressor should be enlarged or modified to provide the suction air pressure without dropping too much. The designed air pressure when the compressor performed compression phase was 244 kPa in 140 rpm, the manufacture precision of the compressor should be increased to decrease leakage.


Author(s):  
Xujiao Gao ◽  
Quinn Looker ◽  
Timothy J. Webb ◽  
K. Russell De Priest ◽  
Benjamin Ulmen

Sign in / Sign up

Export Citation Format

Share Document