rotary vane compressor
Recently Published Documents


TOTAL DOCUMENTS

17
(FIVE YEARS 0)

H-INDEX

3
(FIVE YEARS 0)

2018 ◽  
Vol 245 ◽  
pp. 04008
Author(s):  
Andrey Kotlov ◽  
Leonid Kuznetsov ◽  
Boris Hrustalev

We developed a mathematical model for determining the parameters of mass transfer in the compressor chambers during the processes of compression and discharge. The mass flow rates through the end and radial gaps were determined. Also we analyzed the processes of mass transfer in a clamped volume. We investigated the influence of the number of vanes on the compressor efficiency, taking into account changes in the compressor geometric parameters. We established that overflows through the end surfaces of rotor mainly affect the compressor performance. In order to reduce overflows during the period of discharge, it was proposed to increase the angle of closure of the discharge window at a fixed angle of its opening. The mathematical model allows one to make recommendations on the choice of the optimal number of vanes for a particular design.


Author(s):  
Liquan Song ◽  
Liping Zeng ◽  
Jiandong Zhou ◽  
Xiao Luo

Inner wall profile of the cylinder in a rotary vane compressor (RVC), which influences the motion characteristics of vanes, suction volume, friction characteristic, etc., plays an important role in the performance of the compressor. This work mainly aims at the profile design of a new cylinder for a double-acting RVC with harmonic profile cylinder on the basis of not changing integrate size. According to the relation between cylinder profile and vane motion characteristics, a method for the cylinder profile design is proposed in this paper. With an assumed vane motion, equations of the cylinder profile, cell volume of the compressor as well as pressure angles between vanes and cylinder inner wall are constructed preliminarily. And then through adjusting parameters and optimization with an independently developed procedure, a new cylinder with the so-called combined profile is obtained. Theoretical analysis of the cell volume variations and the pressure angles between vanes and cylinder are conducted. The results show that there is neither rigid impulse nor soft impulse between vanes and cylinder due to the vane continuous motion including displacement, velocity and acceleration. And the pressure angles between vane and cylinder and working volume of the compressor with the new profile cylinder are superior to harmonic profile cylinder, which is useful for the reduction of friction power in the operation of compressor. Experiments show that the cooling capacity and COP of the test refrigeration cycle with the proposed combined profile cylinder is higher than the compressor with harmonic profile cylinder. And the volumetric efficiency and isentropic efficiency of the compressor with combined profile cylinder have better performance. This method can be applied to the design of the cylinder for multiple-acting rotary vane compressors, rotary vane expanders and vane pumps.


2011 ◽  
Vol 34 (3) ◽  
pp. 764-772 ◽  
Author(s):  
Sepehr Sanaye ◽  
Masoud Dehghandokht ◽  
Hassan Mohammadbeigi ◽  
Salman Bahrami

2003 ◽  
Author(s):  
Yuan Mao Huang ◽  
Sheng An Yang

This study introduces an experimental method that can measure air pressures in the vane segments when a sliding-vane rotary compressor performs suction and compression phases in stable or unstable rotational speeds. When the air pressures of these two phases can be measured, the intake effect of the compressor’s inlet and the seal effect of the vane segments can be evaluated, respectively. Because a frequency converter provides unstable rotational speeds when it controls rotational speeds of a motor with a compressor, an encoder mounted on the output shaft of the motor was applied to record the angular location of the compressor rotor. Two strain gauge type pressure transducers were inserted into the cover plate of the compressor to measure air pressures in the vane segments. Comparing the signals of the encoder with pressure transducers, the air pressures in completions of suction and compression phases could be determined in stable or unstable rotational speeds. The air pressures when the compressor performed suction and compression phases were 99.5 kPa and 153 kPa, respectively, in 1400 rpm. The air pressure when the compressor performed suction phase decreased with the rotational speed faster than 800 rpm. The size or shape of the inlet port of the compressor should be enlarged or modified to provide the suction air pressure without dropping too much. The designed air pressure when the compressor performed compression phase was 244 kPa in 140 rpm, the manufacture precision of the compressor should be increased to decrease leakage.


Author(s):  
Yuan Mao Huang ◽  
San Nan Tasy

Abstract The genetic optimization algorithm method is used to design rotary compressors with sliding vanes. After the air properties, volume segment, compression power, loadings and stresses of vanes, friction forces and power loss are calculated, the objective function of the maximum efficiency and the constrained conditions can be derived and integrated. Using the ambient air conditions and the properties of Vespel, the effects of the mutation rate, crossover rate and population size of the genetic algorithm on the design parameters are studied. These design parameters include the major axis length, minor axis length, angular locations of inlet and outlet ports and rotational speed of the compressor, the thickness, depth and height of vanes, and the polytropic exponent. The efficiency of the compressor increases to 0.55 compared with the value of 0.4 obtained from the existing data.


1999 ◽  
Author(s):  
Joseph L. Smith ◽  
Michael D. Webb ◽  
Stephen D. Umans

Abstract A vane latching mechanism for unloading a rotary vane compressor is described. Mechanical unloading is proposed as a potential alternative to electronic control of motor speed for variable compressor capacity. Performance of a demonstration compressor operating at part capacity in a residential air conditioning system is described.


Sign in / Sign up

Export Citation Format

Share Document