What's New in Plastics Injection Molding Processes for Automotive Applications: An Update

1997 ◽  
Author(s):  
Peter F. Grelle ◽  
Kenneth A. Kerouac
2018 ◽  
Vol 38 (7) ◽  
pp. 675-684 ◽  
Author(s):  
Tobias Kleffel ◽  
Dietmar Drummer

Abstract One method to produce electronic systems with high resilience is the encapsulation of metal inserts, for example, lead frames, using assembly injection molding. Such parts are exposed to different mediums, such as water and oil, which can infiltrate and damage the electronic system, especially in automotive applications. Hence, one challenge is to ensure the tightness. The research covered in this paper focuses on the assembly injection molding of tight electronic systems using microstructured metal inserts, manufactured by a two-stage electrochemical treatment. The effects of the electrochemical treatment on the tightness and the bond between metal and polymer of the electronic system are investigated. Furthermore, the influence of the electrochemical treatment on the surface and geometry of the metal insert is evaluated.


2017 ◽  
Vol 23 (2) ◽  
pp. 344-352 ◽  
Author(s):  
Gabriel Antonio Mendible ◽  
Jack A. Rulander ◽  
Stephen P. Johnston

Purpose This study aims to evaluate the performance of injection molding inserts produced via rapid and conventional manufacturing techniques considering the mechanical and thermal performance of the tools as well as the resulting molded part quality. Design/methodology/approach Three insert materials and manufacturing techniques were evaluated, jetted photopolymer (PolyJet) 3D printing using digital ABS, direct metal laser sintering (DMLS) using bronze and machining using stainless steel. Molding trials were performed, and the insert surface temperature, longevity and part properties were evaluated. Complementary information was acquired using computer simulation. Findings Similar behavior and part quality were observed in machined and DMLS inserts. The latter were used for 500 cycles without any signs of failure. PolyJet inserts had increased cycle time and slower rate of cooling which increased shrinkage and crystallinity in the molded parts. PolyJet inserts could be produced quickly at a lower cost than machined or DMLS inserts. Research limitations/implications Cooling within the insert was not studied; inserts were cooled indirectly by the mold plates behind them. Subsequent studies will incorporate cooling lines directly into the inserts. Originality/value Little research has been done to understand the thermal behavior of inserts manufactured via rapid tooling techniques. This study provides a direct comparison between rapid tooling techniques, which is supported by simulation results and analysis of the actual molding properties.


2014 ◽  
Vol 709 ◽  
pp. 374-379
Author(s):  
Yi Jun Huang

Injection molding is one of several molding technology of microcellular foamed plastics. This paper mainly discusses the injection molding mechanism and applications of microcellular foamed plastics here, and analyzes the influence of microcellular foamed plastics injection molding process parameters, including injection pressure, melt temperature, injection time, etc.; At the same time, this paper makes a more systematic discussions for the injection molding technology of microcellular foamed plastics, and the typical cases of microcellular foamed plastics in engineering application are introduced in detail.


Sign in / Sign up

Export Citation Format

Share Document