Development of Roll-Forming Technology With Gradual Cross-Sectional Change

1997 ◽  
Author(s):  
Norio Nishikawa ◽  
Tadahiko Kohama ◽  
Ryuichi Uchino ◽  
Katsuyoshi Horino
2012 ◽  
Vol 504-506 ◽  
pp. 857-862 ◽  
Author(s):  
Ahmad Abrass ◽  
Thomas Kessler ◽  
Peter Groche

For the manufacturing of large quantities of profile-shaped products, the roll forming process represents one of the most effective metal forming technologies. During this process, the sheet metal will be formed into a desired cross-sectional profile using successive pairs of forming rolls. This process is well known as a very complex process in industry because of the multiplicity of the process and design parameters. For that reason, the optimization of roll forming processes using numerical methods like the finite element method is very complex and time-consuming. In this paper, a numerical method will be introduced to accelerate the simulation and to optimize the roll forming process. The newly developed algorithm will be illustrated and validated by analyzing the roll forming process. The details of the FE-model and the numerical algorithm will be described. Furthermore, the results of the numerical simulation with and without the application of the numerical algorithms will be compared. Finally, the process will be optimized using the newly developed method.


Holzforschung ◽  
2010 ◽  
Vol 64 (5) ◽  
Author(s):  
Yi Wang ◽  
Vikram Yadama ◽  
Marie-Pierre Laborie ◽  
Debes Bhattacharyya

Abstract In thermoforming of profiled wood-strand composites, an adhesive system is needed to provide a weak initial bond to maintain mat integrity and architecture during the forming process and eventually a durable bond when the final cross-sectional shape is achieved. A hybrid adhesive composed of phenol formaldehyde (PF) and poly(vinyl acetate) (PVAc) is proposed in this study. The cure kinetics of this hybrid adhesive and bond development in a multi-step hot-pressing is discussed. Cure kinetics studied by differential scanning calorimetry indicated that adding PVAc slowed down the curing reaction of PF resin; however, the full cure of PF was not inhibited. The nth-order Borchardt Daniels (nth-BD) model provided good prediction for the curing of adhesives with a PF/PVAc ratio lower than 1:1. To simulate roll forming of wood-strand mats, a hot-pressing schedule at low temperature combined with multi-stage closing and opening was developed. The nth-BD model was able to predict the actual bond development for composites made with neat PF resin. The results indicated that cure kinetics of a PF/PVAc hybrid adhesive would not significantly differ from neat PF resin for blend ratios of 1:1 or lower, thus potentially providing a resin system for roll forming or matched-die forming of wood-strand composites.


2012 ◽  
Vol 457-458 ◽  
pp. 304-307
Author(s):  
Wen Ting Sun ◽  
Qiang Li ◽  
Bo Qian

How to manufacture high accuracy, complex section, high strength steel products is the current challenge of flexible roll forming technology. This article introduced opening NC system application in flexible roll forming, both in software and in hardware. As the core module of the software system, the interpolation module was discussed. The article mainly focused on how to establish track simulation module. According to the algorithm, we calculated the roller displacement and rotation angle using VC++. At last the simulation processes and results were presented, which prove the trace interpolation algorithm is correct and feasible.


2018 ◽  
Vol 764 ◽  
pp. 201-209
Author(s):  
Miao Hu ◽  
Yan Bo Li ◽  
Xin Li ◽  
Xiao Lin Cao ◽  
Min Hou

Roll – forming is through the allocation of roll the sheets for multiple successive of transverse bending deformation process of the section, to form a specific shape with high energy efficiency, uniform cross section, stable product quality, etc. Since the 19th century began to study the roll-forming process, successively completed the exploration of this kind of technology and promotion from 1938 to 1938.It has entered the rapid development of roll-forming technology at present. Began to roll-forming technology research relatively late in our country, but the trend of development of fast, such as the construction industry, automotive industry, white home appliance industry has been widely used, to specific parts such as highway anti-collision WeiDang, auto parts anticollision beam beams, before and after the threshold of the anticollision beam and a side door production, etc. Roll-forming technology belongs to the nonlinear problem of large plastic deformation, the forming theory of the present domestic scholars have researched, forming a simplified analytical method, energy analysis method, cable original research method and finite element method theory. With the development of computer aided design technology, through the computer simulation of sheet deformation and regional stress analysis, and makes the product design cycle is shortened, the product design quality was improved. At home and abroad, roll-forming equipment have developed highly efficient, the formation of the uncoiled stamping - roll-forming - welding - material such as plastic - cut – code craft route, eventually forming the results approach to the product shape, implementation process highly integrated production mode, cold-formed molding equipment of high automation intelligent design, help to realize planning of ‘Made in China 2025 strategy’ in the industry of roll-forming.


Sign in / Sign up

Export Citation Format

Share Document