Comparative Analysis of Various CFBC Cyclone Separator REPDS Profiles

Author(s):  
N. Prasanna ◽  
R.S. Prakash ◽  
M. Vijayakumar

In the last decade research on CFBC (Circulating Fluidized Bed Combustion Boiler) has been increased but research on cyclone separator has not been paid well attention. All the existing designs of cyclone separator were mainly concentrating on a single parameter that is collection efficiency. But this work mainly concentrates on other parameters like pressure drop and denudation rate. Previous works related to cyclone separator having REPDS (Reduced Pressure Drop Stick) suggest that 50% REPDS in the vortex finder gives the optimum results for all the existing cyclone models. Existing REPDS profile is only circular; we attempted to change the REPDS profile to polygon shapes like square, hexagonal. All the cyclone separators with different REPDS profile have been designed for flow rate of 500m3/hr with operating velocity of 15m/s. CFD (Computational Fluid Dynamics) analysis has been done with operating velocity ranging from 15m/s to 30m/s, using K-€ turbulence model. The results obtained in CFD analysis reveal that there is no much variation in pressure drop, but there is a drastic change in the denudation rate while operating CFBC cyclone separator twice the designed velocity. Thus REPDS can be included in vortex finder of cyclone separator with any polygon profiles as mentioned above.

Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3106
Author(s):  
Tomasz Kalak ◽  
Kinga Marciszewicz ◽  
Joanna Piepiórka-Stepuk

Recently, more and more attention has been paid to the removal of nickel ions due to their negative effects on the environment and human health. In this research, fly ash obtained as a result of incineration of municipal sewage sludge with the use of circulating fluidized bed combustion (CFBC) technology was used to analyze the possibility of removing Ni(II) ions in adsorption processes. The properties of the material were determined using analytical methods, such as SEM-EDS, XRD, BET, BJH, thermogravimetry, zeta potential, SEM, and FT-IR. Several factors were analyzed, such as adsorbent dose, initial pH, initial concentration, and contact time. As a result of the conducted research, the maximum sorption efficiency was obtained at the level of 99.9%. The kinetics analysis and isotherms showed that the pseudo-second order equation model and the Freundlich isotherm model best suited this process. In conclusion, sewage sludge fly ash may be a suitable material for the effective removal of nickel from wastewater and the improvement of water quality. This research is in line with current trends in the concepts of circular economy and sustainable development.


2014 ◽  
Vol 629-630 ◽  
pp. 306-313 ◽  
Author(s):  
Mao Chieh Chi ◽  
Ran Huang ◽  
Te Hsien Wu ◽  
Toun Chun Fou

Circulating fluidized bed combustion (CFBC) fly ash is a promising admixture for construction and building materials due to its pozzolanic activity and self-cementitious property. In this study, CFBC fly ash and coal-fired fly ash were used in Portland cement to investigate the pozzolanic and cementitious characteristics of CFBC fly ash and the properties of cement-based composites. Tests show that CFBC fly ash has the potential instead of cementing materials and as an alternative of pozzolan. In fresh specimens, the initial setting time of mortars increases with the increasing amount of cement replacement by CFBC fly ash and coal-fire fly ash. In harden specimens, adding CFBC fly ash to replace OPC reduces the compressive strength. Meanwhile, CFBC fly ash would results in a higher length change when adding over 30%. Based on the results, the amount of CFBC fly ash replacement cement was recommended to be limited below 20%.


2012 ◽  
Vol 532-533 ◽  
pp. 282-286
Author(s):  
Yuan Ming Song ◽  
Jing Xiang Liu ◽  
Chao Wang ◽  
Hong He Zhong ◽  
Tian Ding

The hydraulic property of Circulating Fluidized Bed Combustion (CFBC) ashes has a significant impact on their treatment and re-utilization. The studies on several CFBC ashes show that the hydraulic property of them is obvious, and even the hydraulic rate is so fast that CFBC pastes can harden within several hours after molding. The influencing factors of hydraulic property of CFBC ashes are investigated. The results confirm that the content of the free lime and the high-activity components has great influence on the hydraulic property of CFBC ashes.


Sign in / Sign up

Export Citation Format

Share Document