scholarly journals Numerical Study of Entropy Generation with Nonlinear Thermal Radiation on Magnetohydrodynamics non-Newtonian Nanofluid Through a Porous Shrinking Sheet

2016 ◽  
Vol 21 (3) ◽  
pp. 468-475 ◽  
Author(s):  
M.M. Bhatti ◽  
T. Abbas ◽  
M.M. Rashidi
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Fazle Mabood ◽  
Anum Shafiq ◽  
Waqar Ahmed Khan ◽  
Irfan Anjum Badruddin

Purpose This study aims to investigate the irreversibility associated with the Fe3O4–Co/kerosene hybrid-nanofluid past a wedge with nonlinear radiation and heat source. Design/methodology/approach This study reports the numerical analysis of the hybrid nanofluid model under the implications of the heat source and magnetic field over a static and moving wedge with slips. The second law of thermodynamics is applied with nonlinear thermal radiation. The system that comprises differential equations of partial derivatives is remodeled into the system of differential equations via similarity transformations and then solved through the Runge–Kutta–Fehlberg with shooting technique. The physical parameters, which emerges from the derived system, are discussed in graphical formats. Excellent proficiency in the numerical process is analyzed by comparing the results with available literature in limiting scenarios. Findings The significant outcomes of the current investigation are that the velocity field uplifts for higher velocity slip and magnetic strength. Further, the heat transfer rate is reduced with the incremental values of the Eckert number, while it uplifts with thermal slip and radiation parameters. An increase in Brinkmann’s number uplifts the entropy generation rate, while that peters out the Bejan number. The results of this study are of importance involving in the assessment of the effect of some important design parameters on heat transfer and, consequently, on the optimization of industrial processes. Originality/value This study is original work that reports the hybrid nanofluid model of Fe3O4–Co/kerosene.


Pramana ◽  
2019 ◽  
Vol 93 (4) ◽  
Author(s):  
Tasawar Hayat ◽  
Mehreen Kanwal ◽  
Sumaira Qayyum ◽  
M Ijaz Khan ◽  
Ahmed Alsaedi

Author(s):  
Bandaru Mallikarjuna ◽  
Srinivas Jangili ◽  
G. Gopi Krishna ◽  
O. A. Beg ◽  
Ali Kadir

Abstract Electromagnetic high-temperature therapy is popular in medical engineering treatments for various diseases include tissue damage ablation repair, hyperthermia and oncological illness diagnosis. The simulation of transport phenomena in such applications requires multi-physical models featuring magnetohydrodynamics, biorheology, heat transfer and deformable porous media. Motivated by investigating the fluid dynamics and thermodynamic optimization of such processes, in the present article a mathematical model is developed to study the combined influence of thermal buoyancy, magnetic field and thermal radiation on the fluid and heat characteristics in electrically-conducting viscoelastic biofluid flow through a vertical deformable porous medium. Jefferys elastic-viscous model is deployed to simulate non-Newtonian characteristics of the biofluid. It is assumed that heat is generated within the fluid by both viscous and Darcy (porous matrix) dissipations. The boundary value problem is normalized with appropriate transformations. The non-dimensional biofluid velocity, solid displacement and temperature equations with appropriate boundary conditions are solved computationally using a spectral method. Verification of accuracy is conducted via monitoring residuals of the solutions and Validated with shooting technique is included. The effects of Jeffrey viscoelastic parameter, viscous drag parameter, magnetic field parameter, radiation parameter and buoyancy parameter on flow velocity, solid displacement, temperature and entropy generation are depicted graphically and interpreted at length. Increasing magnetic field and drag parameters are found to reduce the field velocity, solid displacement, temperature and entropy production. Higher magnitudes of thermal radiation parameter retard the flow and decrease Nusselt number whereas they elevate solid displacement.


Sign in / Sign up

Export Citation Format

Share Document