scholarly journals Liquid crystal cell with a tapered optical fiber as an active element to optical applications

2019 ◽  
Vol 11 (1) ◽  
pp. 13
Author(s):  
Joanna Ewa Moś ◽  
Karol Antoni Stasiewicz ◽  
Leszek Roman Jaroszewicz

The work describes the technology of a liquid crystal cell with a tapered optical fiber as an element providing light. The tapered optical fiber with the total optical loss of 0.22 ± 0.07 dB, the taper waist diameter of 15.5 ± 0.5 μm, and the elongation of 20.4 ± 0.3 mm has been used. The experimental results are presented for a liquid crystal cell filled with a mixture 1550* for parallel orientation of LC molecules to the cross section of the taper waist. Measurement results show the influence of the electrical field with voltage in the range of 0-200 V, without, as well as with different modulation for spectral characteristics. The sinusoidal and square signal shapes are used with a 1-10 Hz frequency range. Full Text: PDF ReferencesZ. Liu, H. Y. Tam, L. Htein, M. L.Vincent Tse, C. Lu, "Microstructured Optical Fiber Sensors", J. Lightwave Technol. 35, 16 (2017). CrossRef T. R. Wolinski, K. Szaniawska, S. Ertman1, P. Lesiak, A. W. Domański, R. Dabrowski, E. Nowinowski-Kruszelnicki, J. Wojcik "Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres", Meas. Sci. Technol. 17, 5 (2006). CrossRef K. Nielsen, D. Noordegraaf, T. Sørensen, A. Bjarklev,T. Hansen, "Selective filling of photonic crystal fibres", J. Opt. A: Pure Appl. Opt. 7, 8 (2005). CrossRef A. A. Rifat, G. A. Mahdiraji, D. M. Chow, Y, Gang Shee, R. Ahmed, F. Rafiq, M Adikan, "Photonic Crystal Fiber-Based Surface Plasmon Resonance Sensor with Selective Analyte Channels and Graphene-Silver Deposited Core", Sensors 15, 5 (2015) CrossRef Y. Huang, Z.Tian, L.P. Sun, D. Sun, J.Li, Y.Ran, B.-O. Guan "High-sensitivity DNA biosensor based on optical fiber taper interferometer coated with conjugated polymer tentacle", Opt. Express 23, 21 (2015). CrossRef X. Wang, O. S. Wolfbeis, "The 2016 Annual Review Issue", Anal. Chem., 88, 1 (2016). CrossRef Ye Tian, W. Wang, N. Wu, X. Zou, X.Wang, "Tapered Optical Fiber Sensor for Label-Free Detection of Biomolecules", Sensors 11, 4 (2011). CrossRef O. Katsunari, Fundamentals of Optical Waveguides, (London, Academic Press, (2006). DirectLink A. K. Sharma, J. Rajan, B.D. Gupta, "Fiber-Optic Sensors Based on Surface Plasmon Resonance: A Comprehensive Review", IEEE Sensors Journal 7, 8 (2007). CrossRef C. Caucheteur, T. Guo, J. Albert, "Review of plasmonic fiber optic biochemical sensors: improving the limit of detection", Anal. Bioanal.Chem. 407, 14 (2015). CrossRef S. F. Silva L. Coelho, O. Frazão, J. L. Santos, F. X.r Malcata, "A Review of Palladium-Based Fiber-Optic Sensors for Molecular Hydrogen Detection", IEEE SENSORS JOURNAL 12, 1 (2012). CrossRef H. Waechter, J. Litman, A. H. Cheung, J. A. Barnes, H.P. Loock, "Chemical Sensing Using Fiber Cavity Ring-Down Spectroscopy", Sensors 10, 3 (2010). CrossRef S. Zhu, F. Pang, S. Huang, F.Zou, Y.Dong, T.Wang, "High sensitivity refractive index sensor based on adiabatic tapered optical fiber deposited with nanofilm by ALD", Opt. Express 23, 11 (2015). CrossRef L. Zhang, J. Lou, L. Tong, "Micro/nanofiber optical sensors", Photonics sensor 1, 1 (2011). CrossRef L.Tong, J. Lou, E. Mazur, "Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides", Opt. Express 11, 6 (2004). CrossRef H. Moyyed, I. T. Leite, L. Coelho, J. L. Santos, D. Viegas, "Analysis of phase interrogated SPR fiber optic sensors with bimetallic layers", IEEE Sensors Journal 14, 10 (2014). CrossRef A. González-Cano, M. Cruz Navarette, Ó. Esteban, N. Diaz Herrera , "Plasmonic sensors based on doubly-deposited tapered optical fibers", Sensors 14, 3 (2014). CrossRef K. A. Stasiewicz, J.E. Moś, "Threshold temperature optical fibre sensors", Opt. Fiber Technol. 32, (2016). CrossRef L. Zhang, F. Gu, J. Lou, X. Yin, L. Tong, "Fast detection of humidity with a subwavelength-diameter fiber taper coated with gelatin film", Opt. Express 16, 17 (2008). CrossRef S.Zhu, F.Pang, S. Huang, F. Zou, Q. Guo, J. Wen, T. Wang, "High Sensitivity Refractometer Based on TiO2-Coated Adiabatic Tapered Optical Fiber via ALD Technology", Sensors 16, 8 (2016). CrossRef G.Brambilla, "Optical fibre nanowires and microwires: a review", J. Optics 12, 4 (2010) CrossRef M. Ahmad, L.L. Hench, "Effect of taper geometries and launch angle on evanescent wave penetration depth in optical fibers", Biosens. Bioelectron. 20, 7 (2005). CrossRef L.M. Blinov, Electrooptic Effects in Liquid Crystal Materials (New York, Springftianer, 1994). CrossRef L. Scolari, T.T. Alkeskjold, A. Bjarklev, "Tunable Gaussian filter based on tapered liquid crystal photonic bandgap fibre", Electron. Lett. 42, 22 (2006). CrossRef J. Moś, M. Florek, K. Garbat, K.A. Stasiewicz, N. Bennis, L.R. Jaroszewicz, "In-Line Tunable Nematic Liquid Crystal Fiber Optic Device", J. of Lightwave Technol. 36, 4 (2017). CrossRef J. Moś, K A Stasiewicz, K Garbat, P Morawiak, W Piecek, L R Jaroszewicz, "Tapered fiber liquid crystal hybrid broad band device", Phys. Scripta. 93, 12 (2018). CrossRef Ch. Veilleux, J. Lapierre, J. Bures, "Liquid-crystal-clad tapered fibers", Opt. Lett. 11, 11 (1986). CrossRef R. Dąbrowski, K. Garbat, S. Urban, T.R. Woliński, J. Dziaduszek, T. Ogrodnik, A,Siarkowska, "Low-birefringence liquid crystal mixtures for photonic liquid crystal fibres application", Liq. Cryst. 44, (2017). CrossRef S. Lacroix, R. J. Black, Ch. Veilleux, J. Lapierre, "Tapered single-mode fibers: external refractive-index dependence", Appl. Opt., 25, 15 (1986). CrossRef J.F. Henninot, D. Louvergneaux , N.Tabiryan, M. Warenghem, "Controlled Leakage of a Tapered Optical Fiber with Liquid Crystal Cladding", Mol. Cryst.and Liq.Cryst., 282, 1(1996). CrossRef

Author(s):  
А.D. Меkhtiyev ◽  
◽  
E.G. Neshina ◽  
P.Sh. Madi ◽  
D.A. Gorokhov ◽  
...  

This article ls with the issues related to the development of a system for monitoring the deformation and displacement of the rock mass leading to the collapse of the quarry sides. Monitoring system uses point-to-point fiber-optic sensors. Fiber-optic sensors and control cables of the communication line are made based on the single mode optical fibers, which allows to measure with high accuracy the deformations and displacements of the rock mass at a distance of 30-50 km. To create fiber-optic pressure sensors, an optical fiber of the ITU-T G. 652.D standard is used. Laboratory sample is developed concerning the point fiber-optic sensor made based on the two-arm Mach-Zender interferometer using a single mode optical fiber for monitoring strain (displacements) with a change in the sensitivity and a reduced influence of temperature interference leading to zero drift. The article presents a mathematical apparatus for calculating the intensity of radiation of a light wave passing through an optical fiber with and without mechanical stress. A laboratory sample of single mode optical fibers based on the Mach-Zender interferometer showed a fairly high linearity and accuracy in the measurement and can be used to control the strain of the mass after appropriate refinement of its design. Mathematical expressions are also given for determining the intensity of the light wave when the distance between the fixing points of a single mode optical fiber changes depending on the change in the external temperature. A diagram for measuring strain using a point fiber-optic strain sensor is developed. Hardware and software package is developed, which can be used to perform a number of settings of measuring channels. The work is aimed at solving the production problems of the Kenzhem quarry of AK Altynalmas JSC.


2019 ◽  
Vol 27 (4) ◽  
pp. 321-328
Author(s):  
P. Marć ◽  
K. Stasiewicz ◽  
J. Korec ◽  
L.R. Jaroszewicz ◽  
P. Kula

1998 ◽  
Vol 20 (2) ◽  
pp. 103-112 ◽  
Author(s):  
H. Wen ◽  
D.G. Wiesler ◽  
A. Tveten ◽  
B. Danver ◽  
A. Dandridge

This paper presents several designs of high-sensitivity, compact fiber-optic ultrasound sensors that may be used for medical imaging applications. These sensors translate ultrasonic pulses into strains in single-mode optical fibers, which are measured with fiber-based laser interferometers at high precision. The sensors are simpler and less expensive to make than piezoelectric sensors, and are not susceptible to electromagnetic interference. It is possible to make focal sensors with these designs, and several schemes are discussed. Because of the minimum bending radius of optical fibers, the designs are suitable for single element sensors rather than for arrays.


1997 ◽  
Vol 503 ◽  
Author(s):  
F. Ansari

ABSTRACTIt is possible to monitor the initiation and progress of various mechanical or environmentally induced perturbations in concrete elements by way of fully integrated optical fiber sensors. Geometric adaptability and ease by which optical fibers can be embedded within concrete elements has led to the development of a number of innovative applications for concrete elements. This article is intended for a brief introduction into the theories, principles, and applications of fiber optic sensors as they pertain to applications in concrete.. However, due to the fact that the transduction mechanism in optical fibers is invariant of the materials employed, the principles introduced here also correspond to other structural materials. The only application related differences among various materials pertain to sensitivity and choice of optical fiber sensor types.


2020 ◽  
Vol 2 (2) ◽  
pp. 91-99
Author(s):  
Imam Mulyanto

The test has been successfully carried out on optical fibers to be used as a macrobending tilt sensor using SMF-28 single mode optical fiber. The optical fiber was molded with silicon rubber, then connected to a laser light and a power meter to see the intensity of the laser power produced. The principle is carried out using the macro bending phenomenon on single mode optical fibers, where the laser light intensity in the fiber optic cable will decrease if there is a bend or bending in the fiber optic cable. We can observe the power loss resulting from the macro bending process to find out how sensitive the optical fiber is to changes in a given angle. The resulting optical fiber sensitivity value is -0.1534o/dBm.


2021 ◽  
Vol 2140 (1) ◽  
pp. 012037
Author(s):  
V V Yugay ◽  
P Sh Madi ◽  
S B Ozhigina ◽  
D A Gorokhov ◽  
A D Alkina

Abstract The paper considers ways to solve the problem of developing a system for monitoring displacement in quarries, which are the main main cause of the collapse of boards and berms in quarries. To ensure safety and constant monitoring during work at the quarry, there are chiseled fiber-optic sensors. The fiber-optic sensor is made on the basis of a single-mode optical fiber, which makes it possible to measure the displacements of the mountain range at distances of about 30 km with high accuracy. Laboratory sample a fiber-optic sensor in its work uses a method for monitoring additional losses that occur during mechanical action on an optical fiber. The fiber-optic sensor was made to show a fairly high linearity and accuracy during measurements and can be used to control the deformation of the array after appropriate refinement of its design. This article is aimed at creating means of controlling the process of deformation and displacement of a mountain massif. Ultimately, the results of the study will help prevent accidents associated with the collapse of the sides. Since the growth of cracks in the rocks of the bort mountain massif leads to its sudden collapse and creates a significant danger for personnel, it also causes the failure of mining equipment.


1998 ◽  
Vol 52 (4) ◽  
pp. 546-551 ◽  
Author(s):  
Anna Grazia Mignani ◽  
Riccardo Falciai ◽  
Leonardo Ciaccheri

This paper discusses the theoretical and experimental implications of tapering a multimode optical fiber with a view to its use in evanescent wave absorption spectroscopy. Good experimental results are obtained, showing the possibility of quadruplicating the absorbance efficiency. This easy and reproducible technique for taper fabrication is suitable for the implementation of both probes for spectroscopy and chemically assisted fiber-optic sensors.


2019 ◽  
Vol 11 (1) ◽  
pp. 16 ◽  
Author(s):  
Joanna Korec ◽  
Karol Antoni Stasiewicz ◽  
Leszek Roman Jaroszewicz

This paper presents the influence of temperature on optical power spectrum propagated in a tapered optical fiber with twisted nematic liquid crystal cladding (TOF-TNLCC) modulated by an electric field. The measurements were performed for a liquid crystal cell with the twisted orientation of ITO layers, filled with E7 mixture. The induced reorientation of liquid crystal (LC) n-director was measured for visible and near-infrared wavelength range [550-1100 nm] at the electric field range of 0–160 V and temperature range of 20-60 °C. The relation between temperature and the optical power spectrum of the investigated device has been established. Full Text: PDF ReferencesV.J. Tekippe, "Passive fiber optic components made by the fused biconical taper process", Proc. SPIE 1085 (1990). CrossRef T. A. Birks, Y. W. Li, The shape of fiber tapers, Journal of Lightwave Technology 10, 4 (1992). CrossRef J. Korec, K. A. Stasiewicz, O. Strzeżysz, P. Kula, L. R. Jaroszewicz, Electro-Steering Tapered Fiber-Optic Device with Liquid Crystal Cladding, Journal of Sensors 2019: 1-11 (2019) CrossRef Ch. Veilleux, J. Lapierre, J. Bures, Liquid-crystal-clad tapered fibers, Opt. Lett. 11, 733-735 (1986) CrossRef J. F Henninot, D. Louvergneaux, N. Tabiryan, M. Warenghem, Controlled leakage of a tapered optical fiber with liquid crystal cladding, Molecular Crystals and Liquid Crystals, 282, 297-308. (1996). CrossRef Y. Wang, et.al., Tapered optical fiber waveguide coupling to whispering gallery modes of liquid crystal microdroplet for thermal sensing application, Opt. Express 25, 918-926 (2017) CrossRef J. Korec, K. A. Stasiewicz, O. Strzeżysz, P. Kula, L. R. Jaroszewicz, . E. Moś, Tapered fibre liquid crystal optical device, Proc. SPIE 10681 (2018) CrossRef G. Assanto, A. Picardi, R. Barboza, A. Alberucci, Electro-optic steering of Nematicons, Phot. Lett. Poland 4, 1 (2012). CrossRef A.Ghanadzadeh Gilani, M.S. Beevers, The Electro-optical kerr effect in eutectic nematic mixtures of E7 and E8,J ournal of Molecular Liquids, 92, 3 (2001). CrossRef E. C. Mägi, P. Steinvurzel, and B.J. Eggleton, Tapered photonic crystal fibers, Opt. Express 784, 12, 5 (2004). CrossRef Y. Li and J. Lit, Transmission properties of a multimode optical-fiber taper, J. Opt. Soc. Am. A 2, (1985). CrossRef J. Korec, K. A. Stasiewicz, and L. R. Jaroszewicz, Temperature influence on optical power spectrum of the tapered fiber device with a liquid crystal cladding, Proc. SPIE 11045, 110450I (2019) CrossRef L.M. Blinov, Liquid crystals: physical properties and their possibilities in application, Advances in Liquid Crystal Research and Applications, (1981). CrossRef


2008 ◽  
Vol 1129 ◽  
Author(s):  
Nguyen Q Nguyen ◽  
Nikhil Gupta

AbstractIn the present work a fiber-optic loop-sensor is designed and tested for possible applications in structural health monitoring of composite materials. It is known that bending an optical fiber beyond a critical curvature leads to loss of optical power through the curved region. The optical power loss depends on the radius of curvature of the loop. The optical power can be measured by a photodetector and a change in the power due a change to the curvature can be measured. In the present research optical fiber-optic loop-sensors are developed that can exploit this concept. Single-mode optical fiber sensors having different loop radii, from 6-10 mm, are fabricated and calibrated for applied strain on the loop. The calibration is carried out using a 0.098 N load cell and a computer controlled translation stage having 50 nm step resolution. Results show that the sensors provide highly repeatable curves for loading and unloading cycles. Smaller loop radii lead to higher optical power losses, resulting in higher sensitivity. Calibration results show that such sensors can be used in structural health monitoring applications. In this approach the coating and cladding of optical fibers are maintained intact; therefore, the sensors are robust and can withstand several composites fabrication processes.


Sign in / Sign up

Export Citation Format

Share Document