scholarly journals Fabrication of the liquid crystalline periodic waveguiding structures by means of the photo-polymerization process

2017 ◽  
Vol 9 (3) ◽  
pp. 82 ◽  
Author(s):  
Bartłomiej Turowski ◽  
Katarzyna Agnieszka Rutkowska

Photonic structures in a form of the waveguide channels, with periodic spatial changes in refractive index in the wavelength scale, are typically manufactured based on well-developed silica and gallium arsenide technology [1], as well as with use of the high-precision lithography. The main disadvantage related to practical application of such devices is that their optical properties cannot be altered after fabrication. Due to this fact, liquid crystalline periodic waveguiding structures, manufactured with use of the photo-polymerization process, have been proposed in this work. Importantly, propagational characteristic of such photonic structures can be easily adjusted during fabrication procedure, and then may be also dynamically tuned by e.g. applied external voltage, as presented in this communication. Full Text: PDF ReferencesM.J. Ablowitz, Z.H. Musslimani, "Discrete spatial solitons in a diffraction-managed nonlinear waveguide array: a unified approach", Physica D: Nonlinear Phenomena 184(1), 276 (2003). CrossRef L. Vicari, Optical applications of liquid crystals, CRC press, 2016. CrossRef J. Yan, S.-T. Wu, "Effect of Polymer Concentration and Composition on Blue Phase Liquid Crystals", J. Display Technol. 7, 9 (2011). CrossRef J. Schirmer et al., "Birefringence and Refractive Indices Dispersion of Different Liquid Crystalline Structures", Mol. Cryst. Liquid Cryst. 307, 17 (1997). CrossRef D. Xu et al., "Blue phase liquid crystals stabilized by linear photo-polymerization", Appl. Phys. Lett. 105, 8 (2014). CrossRef I. Dierking et al., "Stabilising liquid crystalline Blue Phases", Soft Matter 8, 4355 (2012). CrossRef K. Kang, L.C. Chien, S. Sprunt, "Polymer-stabilized cholesteric liquid crystal microgratings: a comparison of polymer network formation and electro-optic properties for mesogenic and non-mesogenic monomers", Liquid Crystals 29, 9 (2002). CrossRef K.A. Rutkowska, M. Chychłowski, U.A. Laudyn, "Polymer-stabilized periodic waveguiding structures in liquid crystalline materials", Proc. SPIE 10325 (2017). CrossRef

2017 ◽  
Vol 9 (1) ◽  
pp. 11 ◽  
Author(s):  
Pankaj Joshi ◽  
Oliver Willekens ◽  
Xiaobing Shang ◽  
Jelle De Smet ◽  
Dieter Cuypers ◽  
...  

A polarization independent and fast electrically switchable beam steering device is presented, based on a surface relief grating combined with polymer stabilized blue phase liquid crystals. Switching on and off times are both less than 2 milliseconds. The prospects of further improvements are discussed. Full Text: PDF ReferencesD.C. Wright, et al., "Crystalline liquids: the blue phases", Rev. Mod. Phys. 61, 385 (1989). CrossRef H. Kikuchi, et al., "Polymer-stabilized liquid crystal blue phases", Nat. Mater. 1, 64 (2002). CrossRef Samsung, Korea, SID exhibition, (2008).J. Yan, et al., "Direct measurement of electric-field-induced birefringence in a polymer-stabilized blue-phase liquid crystal composite", Opt. Express 18, 11450 (2010). CrossRef L. Rao, et al., "A large Kerr constant polymer-stabilized blue phase liquid crystal", Appl. Phys. Lett. 98, 081109 (2011). CrossRef Y. Hisakado, et al., "Large Electro-optic Kerr Effect in Polymer-Stabilized Liquid-Crystalline Blue Phases", Adv. Mater. 17, 96 (2005). CrossRef K. M. et al., "Submillisecond Gray-Level Response Time of a Polymer-Stabilized Blue-Phase Liquid Crystal", J. Disp. Technol. 6, 49 (2010). CrossRef Y. Chen, et al., "Level set based topology optimization for optical cloaks", Appl. Phys. Lett. 102, 251106 (2013). CrossRef H. Choi, et al., "Fast electro-optic switching in liquid crystal blue phase II", Appl. Phys. Lett. 98, 131905 (2011). CrossRef Y.H. Chen, et al., "Polarization independent Fabry-Pérot filter based on polymer-stabilized blue phase liquid crystals with fast response time", Opt. Express 19, 25441 (2011). CrossRef Y. Li, et al., "Polarization independent adaptive microlens with a blue-phase liquid crystal", Opt. Express 19, 8045 (2011). CrossRef C.T. Lee, et al., "Design of polarization-insensitive multi-electrode GRIN lens with a blue-phase liquid crystal", Opt. Express 19, 17402 (2011). CrossRef Y.T. Lin, et al., "Mid-infrared absorptance of silicon hyperdoped with chalcogen via fs-laser irradiation", J. Appl. Phys. 113, (2013). CrossRef J.D. Lin, et al., "Spatially tunable photonic bandgap of wide spectral range and lasing emission based on a blue phase wedge cell", Optics Express 22, 29479 (2014). CrossRef W. Cao, et al., "Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II", Nat. Mat. 1, 111 (2002). CrossRef S.T. Hur, et al., "Liquid-Crystalline Blue Phase Laser with Widely Tunable Wavelength", Adv. Mater. 25, 3002 (2013). CrossRef A. Mazzulla, et al., "Thermal and electrical laser tuning in liquid crystal blue phase I", Soft. Mater. 8, 4882 (2012). CrossRef C.W. Chen, et al., "Random lasing in blue phase liquid crystals", Opt. Express 20, 23978 (2012). CrossRef O. Willekens, et al., "Ferroelectric thin films with liquid crystal for gradient index applications", Opt. Exp. 24, 8088 (2016). CrossRef O. Willekens, et al., "Reflective liquid crystal hybrid beam-steerer", Opt. Exp. 24, 1541 (2016). CrossRef M. Jazbinšek, et al., "Characterization of holographic polymer dispersed liquid crystal transmission gratings", J. Appl. Phys. 90, 3831 (2001). CrossRef C.C. Bowley, et al., "Variable-wavelength switchable Bragg gratings formed in polymer-dispersed liquid crystals", Appl. Phys. Lett. 79, 9 (2001). CrossRef Y.Q. Lu, et al., "Polarization switch using thick holographic polymer-dispersed liquid crystal grating", Appl. Phys. 95, 810 (2004). CrossRef J.J. Butler et al., "Diffraction properties of highly birefringent liquid-crystal composite gratings", Opt. Lett. 25, 420 (2000). CrossRef R.L. Sutherland et al., "Electrically switchable volume gratings in polymer-dispersed liquid crystals", Appl. Phys. Lett. 64, 1074 (1994). CrossRef X. Shang, et al., "Electrically Controllable Liquid Crystal Component for Efficient Light Steering", IEEE Photo. J. 7, 1 (2015). CrossRef J. Yan, et al., "Extended Kerr effect of polymer-stabilized blue-phase liquid crystals", Appl. Phys. Lett. 96, 071105 (2010). CrossRef H.S. Chen, et al., "Hysteresis-free polymer-stabilized blue phase liquid crystals using thermal recycles", Opt. Mat. Exp. 2, 1149 (2012). CrossRef J. Yan. et al., "Dual-period tunable phase grating using polymer stabilized blue phase liquid crystal", Opt. Lett. 40, 4520 (2015). CrossRef H.S. Chen, et al., "Hysteresis-free polymer-stabilized blue phase liquid crystals using thermal recycles", Opt. Mat. Exp. 2, 1149 (2012). CrossRef H.C. Cheng, et al., "Blue-Phase Liquid Crystal Displays With Vertical Field Switching", J. Disp. Technol. 8, 98 (2012). CrossRef


2019 ◽  
Vol 50 (1) ◽  
pp. 1788-1791
Author(s):  
Yifan Feng ◽  
Changli Sun ◽  
Shenghao Zha ◽  
Jiangang Lu

2016 ◽  
Vol 108 (8) ◽  
pp. 081107
Author(s):  
B. Atorf ◽  
H. Rasouli ◽  
G. Nordendorf ◽  
D. Wilkes ◽  
H. Kitzerow

2018 ◽  
Vol 9 (16) ◽  
pp. 2101-2108 ◽  
Author(s):  
Jianqiu Jin ◽  
Mingjie Tang ◽  
Zhenghe Zhang ◽  
Kang Zhou ◽  
Yun Gao ◽  
...  

A study of the phase transition behaviors of blue phase liquid crystals containing different amounts of POSS-functionalized LC BCPs.


2013 ◽  
Vol 44 (1) ◽  
pp. 254-257 ◽  
Author(s):  
Yasuhiro Haseba ◽  
Shin-ichi Yamamoto ◽  
Kohki Sago ◽  
Akihiro Takata ◽  
Hitoshi Tobata

2010 ◽  
Vol 96 (11) ◽  
pp. 113505 ◽  
Author(s):  
Yi-Hsin Lin ◽  
Hung-Shan Chen ◽  
Hung-Chun Lin ◽  
Yu-Shih Tsou ◽  
Hsu-Kuan Hsu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document