scholarly journals Cornalba-Harris equality for semistable hyperelliptic curves in positive characteristic

2004 ◽  
Vol 8 (3) ◽  
pp. 409-426 ◽  
Author(s):  
Kazuhiko Yamaki
2021 ◽  
Vol 9 ◽  
Author(s):  
Andrea Di Lorenzo ◽  
Roberto Pirisi

Abstract Using the theory of cohomological invariants for algebraic stacks, we compute the Brauer group of the moduli stack of hyperelliptic curves ${\mathcal {H}}_g$ over any field of characteristic $0$ . In positive characteristic, we compute the part of the Brauer group whose order is prime to the characteristic of the base field.


2015 ◽  
Vol 18 (1) ◽  
pp. 258-265 ◽  
Author(s):  
Jennifer S. Balakrishnan

The Coleman integral is a $p$-adic line integral that encapsulates various quantities of number theoretic interest. Building on the work of Harrison [J. Symbolic Comput. 47 (2012) no. 1, 89–101], we extend the Coleman integration algorithms in Balakrishnan et al. [Algorithmic number theory, Lecture Notes in Computer Science 6197 (Springer, 2010) 16–31] and Balakrishnan [ANTS-X: Proceedings of the Tenth Algorithmic Number Theory Symposium, Open Book Series 1 (Mathematical Sciences Publishers, 2013) 41–61] to even-degree models of hyperelliptic curves. We illustrate our methods with numerical examples computed in Sage.


2008 ◽  
Vol 2 (8) ◽  
pp. 859-885 ◽  
Author(s):  
Yann Bugeaud ◽  
Maurice Mignotte ◽  
Samir Siksek ◽  
Michael Stoll ◽  
Szabolcs Tengely

2020 ◽  
pp. 1-14
Author(s):  
ROBERTO LAFACE ◽  
SOFIA TIRABASSI

Abstract We give a notion of ordinary Enriques surfaces and their canonical lifts in any positive characteristic, and we prove Torelli-type results for this class of Enriques surfaces.


Author(s):  
Dea Korcari ◽  
Giovanni Ricci ◽  
Claudia Capusoni ◽  
Maria Grazia Fortina

AbstractIn this work we explored the potential of several strains of Kazachstania unispora to be used as non-conventional yeasts in sourdough fermentation. Properties such as carbohydrate source utilization, tolerance to different environmental factors and the performance in fermentation were evaluated. The K. unispora strains are characterized by rather restricted substrate utilization: only glucose and fructose supported the growth of the strains. However, the growth in presence of fructose was higher compared to a Saccharomyces cerevisiae commercial strain. Moreover, the inability to ferment maltose can be considered a positive characteristic in sourdoughs, where the yeasts can form a nutritional mutualism with maltose-positive Lactic Acid Bacteria. Tolerance assays showed that K. unispora strains are adapted to a sourdough environment: they were able to grow in conditions of high osmolarity, high acidity and in presence of organic acids, ethanol and salt. Finally, the performance in fermentation was comparable with the S. cerevisiae commercial strain. Moreover, the growth was more efficient, which is an advantage in obtaining the biomass in an industrial scale. Our data show that K. unispora strains have positive properties that should be explored further in bakery sector. Graphic abstract


Sign in / Sign up

Export Citation Format

Share Document