nutritional mutualism
Recently Published Documents


TOTAL DOCUMENTS

10
(FIVE YEARS 3)

H-INDEX

5
(FIVE YEARS 0)

Author(s):  
Dea Korcari ◽  
Giovanni Ricci ◽  
Claudia Capusoni ◽  
Maria Grazia Fortina

AbstractIn this work we explored the potential of several strains of Kazachstania unispora to be used as non-conventional yeasts in sourdough fermentation. Properties such as carbohydrate source utilization, tolerance to different environmental factors and the performance in fermentation were evaluated. The K. unispora strains are characterized by rather restricted substrate utilization: only glucose and fructose supported the growth of the strains. However, the growth in presence of fructose was higher compared to a Saccharomyces cerevisiae commercial strain. Moreover, the inability to ferment maltose can be considered a positive characteristic in sourdoughs, where the yeasts can form a nutritional mutualism with maltose-positive Lactic Acid Bacteria. Tolerance assays showed that K. unispora strains are adapted to a sourdough environment: they were able to grow in conditions of high osmolarity, high acidity and in presence of organic acids, ethanol and salt. Finally, the performance in fermentation was comparable with the S. cerevisiae commercial strain. Moreover, the growth was more efficient, which is an advantage in obtaining the biomass in an industrial scale. Our data show that K. unispora strains have positive properties that should be explored further in bakery sector. Graphic abstract


Author(s):  
Daniel Pers ◽  
Allison K Hansen

Abstract Within long term symbioses animals integrate their physiology and development with their symbiont. In a model nutritional mutualism, aphids harbor the endosymbiont, Buchnera, within specialized bacteriocyte cells. Buchnera synthesizes essential amino acids (EAA) and vitamins for their host, which are lacking from the aphid’s plant sap diet. It is unclear if the aphid host differentially expresses aphid EAA metabolism pathways and genes that collaborate with Buchnera for the production of EAA and vitamins throughout nymphal development when feeding on plants. It is also unclear if aphid bacteriocytes are differentially methylated throughout aphid development as DNA methylation may play a role in gene regulation. By analyzing aphid gene expression, we determined that the bacteriocyte is metabolically more active in metabolizing Buchnera’s EAAs and vitamins early in nymphal development compared to intermediate or later immature and adult lifestages. The largest changes in aphid bacteriocyte gene expression, especially for aphid genes that collaborate with Buchnera, occurred during the 3rd to 4th instar transition. During this transition there is a huge shift in the bacteriocyte from a high energy ‘nutrient-consuming state’ to a ‘recovery and growth state’ where patterning and signaling genes and pathways are upregulated and differentially methylated, and de novo methylation is reduced as evidenced by homogenous DNA methylation profiles after the 2nd instar. Moreover, bacteriocyte number increased and Buchnera’s titer decreased throughout aphid nymphal development. These data suggest in combination that bacteriocytes of older nymphal and adult lifestages depend less on the nutritional symbiosis compared to early nymphal lifestages.


2020 ◽  
Vol 14 (12) ◽  
pp. 3068-3078
Author(s):  
Rhona K. Stuart ◽  
Eric R. A. Pederson ◽  
Philip D. Weyman ◽  
Peter K. Weber ◽  
Ulla Rassmussen ◽  
...  

Abstract In nitrogen-limited boreal forests, associations between feathermoss and diazotrophic cyanobacteria control nitrogen inputs and thus carbon cycling, but little is known about the molecular regulators required for initiation and maintenance of these associations. Specifically, a benefit to the cyanobacteria is not known, challenging whether the association is a nutritional mutualism. Targeted mutagenesis of the cyanobacterial alkane sulfonate monooxygenase results in an inability to colonize feathermosses by the cyanobacterium Nostoc punctiforme, suggesting a role for organic sulfur in communication or nutrition. Isotope probing paired with high-resolution imaging mass spectrometry (NanoSIMS) demonstrated bidirectional elemental transfer between partners, with carbon and sulfur both being transferred to the cyanobacteria, and nitrogen transferred to the moss. These results support the hypothesis that moss and cyanobacteria enter a mutualistic exosymbiosis with substantial bidirectional material exchange of carbon and nitrogen and potential signaling through sulfur compounds.


2018 ◽  
Vol 27 (2) ◽  
pp. 362-377.e8 ◽  
Author(s):  
Gilles Storelli ◽  
Maura Strigini ◽  
Théodore Grenier ◽  
Loan Bozonnet ◽  
Martin Schwarzer ◽  
...  

2017 ◽  
Author(s):  
Yi Hu ◽  
Jon G. Sanders ◽  
Piotr Łukasik ◽  
Catherine L. D’Amelio ◽  
John S. Millar ◽  
...  

AbstractNitrogen acquisition is a major challenge for herbivorous animals, and the repeated origins of herbivory across the ants have raised expectations that nutritional symbionts have shaped their diversification. Direct evidence for N-provisioning by internally housed symbionts is rare in animals; among the ants, it has been documented for just one lineage. In this study we dissect functional contributions by bacteria from a conserved, multi-partite gut symbiosis in herbivorous Cephalotes ants through in vivo experiments, (meta)genomics, and in vitro assays. Gut bacteria recycle urea, and likely uric acid, using recycled N to synthesize essential amino acids that are acquired by hosts in substantial quantities. Specialized core symbionts of 17 studied Cephalotes species encode the pathways directing these activities, and several recycle N in vitro. These findings point to a highly efficient N-economy, and a nutritional mutualism preserved for millions of years through the derived behaviors and gut anatomy of Cephalotes ants.CategoryBiological Sciences-Evolution


2014 ◽  
Vol 111 (28) ◽  
pp. 10257-10262 ◽  
Author(s):  
N. Nikoh ◽  
T. Hosokawa ◽  
M. Moriyama ◽  
K. Oshima ◽  
M. Hattori ◽  
...  

PLoS ONE ◽  
2012 ◽  
Vol 7 (5) ◽  
pp. e36179 ◽  
Author(s):  
Vincent Bazile ◽  
Jonathan A. Moran ◽  
Gilles Le Moguédec ◽  
David J. Marshall ◽  
Laurence Gaume

2010 ◽  
Vol 27 (1) ◽  
pp. 15-24 ◽  
Author(s):  
Vincent Bonhomme ◽  
Isabelle Gounand ◽  
Christine Alaux ◽  
Emmanuelle Jousselin ◽  
Daniel Barthélémy ◽  
...  

Abstract:The Bornean climber, Nepenthes bicalcarata, is unique among plants because it is both carnivorous and myrmecophytic, bearing pitcher-shaped leaves and the ant Camponotus schmitzi within tendrils. We explored, in the peat swamp forests of Brunei, the hypothesis that these ants contribute to plant nutrition by catching and digesting its prey. We first tested whether ants increased plant's capture rate. We found that unlike most plant-ants, C. schmitzi do not exhibit dissuasive leaf-patrolling behaviour (zero patrol on 67 pitchers of 10 plants) but lie concealed under pitcher rim (13 ± 6 ants per pitcher) allowing numerous insect visits. However, 47 out of 50 individuals of the largest visitor dropped into the pitchers of five plants were attacked by ants and the capture rate of the same pitchers deprived of their ambush hunting ants decreased three-fold. We then tested whether ants participated in plant's digestion. We showed in a 15-d long experiment that ants fed on prey and returned it in pieces in seven out of eight pitchers. The 40 prey deposited in ant-deprived pitchers remained intact indicating a weak digestive power of the fluid confirmed to be only weakly acidic (pH ~5, n = 67). The analysis of 10 pitcher contents revealed that prey, mainly ants and termites, was very numerous (~400 per pitcher per plant) and highly fragmented. Altogether, these data suggest a positive effect of C. schmitzi on both prey intake and breakdown. This ant–plant interaction could thus be a nutritional mutualism involving the unusual association of carnivory and myrmecotrophy.


2008 ◽  
Vol 275 (1638) ◽  
pp. 1029-1035 ◽  
Author(s):  
Vincent Merckx ◽  
Martin I Bidartondo

The ancient arbuscular mycorrhizal association between the vast majority of plants and the fungal phylum Glomeromycota is a dominant nutritional mutualism worldwide. In the mycorrhizal mutualism, plants exchange photosynthesized carbohydrates for mineral nutrients acquired by fungi from the soil. This widespread cooperative arrangement is broken by ‘cheater’ plant species that lack the ability to photosynthesize and thus become dependent upon three-partite linkages (cheater–fungus–photosynthetic plant). Using the first fine-level coevolutionary analysis of mycorrhizas, we show that extreme fidelity towards fungi has led cheater plants to lengthy evolutionary codiversification. Remarkably, the plants' evolutionary history closely mirrors that of their considerably older mycorrhizal fungi. This demonstrates that one of the most diffuse mutualistic networks is vulnerable to the emergence, persistence and speciation of highly specific cheaters.


Sign in / Sign up

Export Citation Format

Share Document