scholarly journals Categorical mirror symmetry: The elliptic curve

1998 ◽  
Vol 2 (2) ◽  
pp. 443-470 ◽  
Author(s):  
Alexander Polishchuk ◽  
Eric Zaslow
2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Matsuo Sato

We prove that the moduli space of the pseudo holomorphic curves in the A-model on a symplectic torus is homeomorphic to a moduli space of Feynman diagrams in the configuration space of the morphisms in the B-model on the corresponding elliptic curve. These moduli spaces determine the A∞ structure of the both models.


2017 ◽  
Vol 2017 (732) ◽  
pp. 211-246 ◽  
Author(s):  
Janko Böhm ◽  
Kathrin Bringmann ◽  
Arne Buchholz ◽  
Hannah Markwig

Abstract Mirror symmetry relates Gromov–Witten invariants of an elliptic curve with certain integrals over Feynman graphs [10]. We prove a tropical generalization of mirror symmetry for elliptic curves, i.e., a statement relating certain labeled Gromov–Witten invariants of a tropical elliptic curve to more refined Feynman integrals. This result easily implies the tropical analogue of the mirror symmetry statement mentioned above and, using the necessary Correspondence Theorem, also the mirror symmetry statement itself. In this way, our tropical generalization leads to an alternative proof of mirror symmetry for elliptic curves. We believe that our approach via tropical mirror symmetry naturally carries the potential of being generalized to more adventurous situations of mirror symmetry. Moreover, our tropical approach has the advantage that all involved invariants are easy to compute. Furthermore, we can use the techniques for computing Feynman integrals to prove that they are quasimodular forms. Also, as a side product, we can give a combinatorial characterization of Feynman graphs for which the corresponding integrals are zero. More generally, the tropical mirror symmetry theorem gives a natural interpretation of the A-model side (i.e., the generating function of Gromov–Witten invariants) in terms of a sum over Feynman graphs. Hence our quasimodularity result becomes meaningful on the A-model side as well. Our theoretical results are complemented by a Singular package including several procedures that can be used to compute Hurwitz numbers of the elliptic curve as integrals over Feynman graphs.


2020 ◽  
Vol 156 (7) ◽  
pp. 1275-1309
Author(s):  
Andrei Căldăraru ◽  
Junwu Tu

We compute the $g=1$, $n=1$ B-model Gromov–Witten invariant of an elliptic curve $E$ directly from the derived category $\mathsf{D}_{\mathsf{coh}}^{b}(E)$. More precisely, we carry out the computation of the categorical Gromov–Witten invariant defined by Costello using as target a cyclic $\mathscr{A}_{\infty }$ model of $\mathsf{D}_{\mathsf{coh}}^{b}(E)$ described by Polishchuk. This is the first non-trivial computation of a positive-genus categorical Gromov–Witten invariant, and the result agrees with the prediction of mirror symmetry: it matches the classical (non-categorical) Gromov–Witten invariants of a symplectic 2-torus computed by Dijkgraaf.


Author(s):  
Yoichi Ishida ◽  
Hideki Ichinose ◽  
Yutaka Takahashi ◽  
Jin-yeh Wang

Layered materials draw attention in recent years in response to the world-wide drive to discover new functional materials. High-Tc superconducting oxide is one example. Internal interfaces in such layered materials differ significantly from those of cubic metals. They are often parallel to the layer of the neighboring crystals in sintered samples(layer plane boundary), while periodically ordered interfaces with the two neighboring crystals in mirror symmetry to each other are relatively rare. Consequently, the atomistic features of the interface differ significantly from those of cubic metals. In this paper grain boundaries in sintered high-Tc superconducting oxides, joined interfaces between engineering ceramics with metals, and polytype interfaces in vapor-deposited bicrystal are examined to collect atomic information of the interfaces in layered materials. The analysis proved that they are not neccessarily more complicated than that of simple grain boundaries in cubic metals. The interfaces are majorly layer plane type which is parallel to the compound layer. Secondly, chemical information is often available, which helps the interpretation of the interface atomic structure.


Author(s):  
Hamish L. Fraser

The topic of strain and lattice parameter measurements using CBED is discussed by reference to several examples. In this paper, only one of these examples is referenced because of the limitation of length. In this technique, scattering in the higher order Laue zones is used to determine local lattice parameters. Work (e.g. 1) has concentrated on a model strained-layer superlattice, namely Si/Gex-Si1-x. In bulk samples, the strain is expected to be tetragonal in nature with the unique axis parallel to [100], the growth direction. When CBED patterns are recorded from the alloy epi-layers, the symmetries exhibited by the patterns are not tetragonal, but are in fact distorted from this to lower symmetries. The spatial variation of the distortion close to a strained-layer interface has been assessed. This is most readily noted by consideration of Fig. 1(a-c), which show enlargements of CBED patterns for various locations and compositions of Ge. Thus, Fig. 1(a) was obtained with the electron beam positioned in the center of a 5Ge epilayer and the distortion is consistent with an orthorhombic distortion. When the beam is situated at about 150 nm from the interface, the same part of the CBED pattern is shown in Fig. 1(b); clearly, the symmetry exhibited by the mirror planes in Fig. 1 is broken. Finally, when the electron beam is positioned in the center of a 10Ge epilayer, the CBED pattern yields the result shown in Fig. 1(c). In this case, the break in the mirror symmetry is independent of distance form the heterointerface, as might be expected from the increase in the mismatch between 5 and 10%Ge, i.e. 0.2 to 0.4%, respectively. From computer simulation, Fig.2, the apparent monocline distortion corresponding to the 5Ge epilayer is quantified as a100 = 0.5443 nm, a010 = 0.5429 nm and a001 = 0.5440 nm (all ± 0.0001 nm), and α = β = 90°, γ = 89.96 ± 0.02°. These local symmetry changes are most likely due to surface relaxation phenomena.


Author(s):  
Jean-Luc Rouvière ◽  
Alain Bourret

The possible structural transformations during the sample preparations and the sample observations are important issues in electron microscopy. Several publications of High Resolution Electron Microscopy (HREM) have reported that structural transformations and evaporation of the thin parts of a specimen could happen in the microscope. Diffusion and preferential etchings could also occur during the sample preparation.Here we report a structural transformation of a germanium Σ=13 (510) [001] tilt grain boundary that occurred in a medium-voltage electron microscopy (JEOL 400KV).Among the different (001) tilt grain boundaries whose atomic structures were entirely determined by High Resolution Electron Microscopy (Σ = 5(310), Σ = 13 (320), Σ = 13 (510), Σ = 65 (1130), Σ = 25 (710) and Σ = 41 (910), the Σ = 13 (510) interface is the most interesting. It exhibits two kinds of structures. One of them, the M-structure, has tetracoordinated covalent bonds and is periodic (fig. 1). The other, the U-structure, is also tetracoordinated but is not strictly periodic (fig. 2). It is composed of a periodically repeated constant part that separates variable cores where some atoms can have several stable positions. The M-structure has a mirror glide symmetry. At Scherzer defocus, its HREM images have characteristic groups of three big white dots that are distributed on alternatively facing right and left arcs (fig. 1). The (001) projection of the U-structure has an apparent mirror symmetry, the portions of good coincidence zones (“perfect crystal structure”) regularly separate the variable cores regions (fig. 2).


2011 ◽  
Vol 29 (supplement) ◽  
pp. 283-304 ◽  
Author(s):  
Timothy R. Brick ◽  
Steven M. Boker

Among the qualities that distinguish dance from other types of human behavior and interaction are the creation and breaking of synchrony and symmetry. The combination of symmetry and synchrony can provide complex interactions. For example, two dancers might make very different movements, slowing each time the other sped up: a mirror symmetry of velocity. Examining patterns of synchrony and symmetry can provide insight into both the artistic nature of the dance, and the nature of the perceptions and responses of the dancers. However, such complex symmetries are often difficult to quantify. This paper presents three methods – Generalized Local Linear Approximation, Time-lagged Autocorrelation, and Windowed Cross-correlation – for the exploration of symmetry and synchrony in motion-capture data as is it applied to dance and illustrate these with examples from a study of free-form dance. Combined, these techniques provide powerful tools for the examination of the structure of symmetry and synchrony in dance.


Author(s):  
Kazuki NAGANUMA ◽  
Takashi SUZUKI ◽  
Hiroyuki TSUJI ◽  
Tomoaki KIMURA

Sign in / Sign up

Export Citation Format

Share Document