scholarly journals Contact Structures with Distinct Heegaard Floer Invariants

2004 ◽  
Vol 11 (4) ◽  
pp. 547-561 ◽  
Author(s):  
Olga Plamenevskaya
2005 ◽  
Vol 129 (1) ◽  
pp. 39-61 ◽  
Author(s):  
Peter Ozsváth ◽  
Zoltán Szabó

2019 ◽  
Vol 28 (04) ◽  
pp. 1950032 ◽  
Author(s):  
J. Conway

We investigate the line between tight and overtwisted for surgeries on fibered transverse knots in contact 3-manifolds. When the contact structure [Formula: see text] is supported by the fibered knot [Formula: see text], we obtain a characterization of when negative surgeries result in a contact structure with nonvanishing Heegaard Floer contact class. To do this, we leverage information about the contact structure [Formula: see text] supported by the mirror knot [Formula: see text]. We derive several corollaries about the existence of tight contact structures, L-space knots outside [Formula: see text], nonplanar contact structures, and nonplanar Legendrian knots.


Author(s):  
Peter Mann

This chapter examines the structure of the phase space of an integrable system as being constructed from invariant tori using the Arnold–Liouville integrability theorem, and periodic flow and ergodic flow are investigated using action-angle theory. Time-dependent mechanics is formulated by extending the symplectic structure to a contact structure in an extended phase space before it is shown that mechanics has a natural setting on a jet bundle. The chapter then describes phase space of integrable systems and how tori behave when time-dependent dynamics occurs. Adiabatic invariance is discussed, as well as slow and fast Hamiltonian systems, the Hannay angle and counter adiabatic terms. In addition, the chapter discusses foliation, resonant tori, non-resonant tori, contact structures, Pfaffian forms, jet manifolds and Stokes’s theorem.


2015 ◽  
Vol 152 (1) ◽  
pp. 152-186 ◽  
Author(s):  
Tye Lidman ◽  
Steven Sivek

We apply results from both contact topology and exceptional surgery theory to study when Legendrian surgery on a knot yields a reducible manifold. As an application, we show that a reducible surgery on a non-cabled positive knot of genus$g$must have slope$2g-1$, leading to a proof of the cabling conjecture for positive knots of genus 2. Our techniques also produce bounds on the maximum Thurston–Bennequin numbers of cables.


2017 ◽  
Vol 2017 ◽  
pp. 1-5
Author(s):  
Henning Fouckhardt ◽  
Johannes Strassner ◽  
Carina Heisel ◽  
Dominic Palm ◽  
Christoph Doering

Tunable microoptics deals with devices of which the optical properties can be changed during operation without mechanically moving solid parts. Often a droplet is actuated instead, and thus tunable microoptics is closely related to microfluidics. One such device/module/cell type is an optical shutter, which is moved in or out of the path of the light. In our case the transmitting part comprises a moving transparent and electrically conductive water droplet, embedded in a nonconductive blackened oil, that is, an opaque emulsion with attenuation of 30 dB at 570 nm wavelength over the 250 μm long light path inside the fluid (15 dB averaged over the visible spectral range). The insertion loss of the cell is 1.5 dB in the “open shutter” state. The actuation is achieved via electrowetting-on-dielectrics (EWOD) with rectangular AC voltage pulses of 2·90 V peak-to-peak at 1 kHz. To flexibly allow for horizontal, vertical, and diagonal droplet movement in the upright x-y plane, the contact structures are prepared such that four possible stationary droplet positions exist. The cell is configured as two capacitors in series (along the z axis), such that EWOD forces act symmetrically in the front and back of the 60 nl droplet with a response time of <20 ms.


2018 ◽  
Vol 27 (01) ◽  
pp. 1850003
Author(s):  
Kyungbae Park

Let [Formula: see text] be the positively clasped untwisted Whitehead double of a knot [Formula: see text], and [Formula: see text] be the [Formula: see text] torus knot. We show that [Formula: see text] and [Formula: see text] are linearly independent in the smooth knot concordance group [Formula: see text] for each [Formula: see text]. Further, [Formula: see text] and [Formula: see text] generate a [Formula: see text] summand in the subgroup of [Formula: see text] generated by topologically slice knots. We use the concordance invariant [Formula: see text] of Manolescu and Owens, using Heegaard Floer correction term. Interestingly, these results are not easily shown using other concordance invariants such as the [Formula: see text]-invariant of knot Floer theory and the [Formula: see text]-invariant of Khovanov homology. We also determine the infinity version of the knot Floer complex of [Formula: see text] for any [Formula: see text] generalizing a result for [Formula: see text] of Hedden, Kim and Livingston.


2007 ◽  
Vol 129 (5) ◽  
pp. 1403-1447 ◽  
Author(s):  
Paolo. Ghiggini ◽  
Paolo. Lisca ◽  
András. Stipsicz

Sign in / Sign up

Export Citation Format

Share Document