scholarly journals The Design of a Power Supply for Planer Type of the Dielectric Barrier Discharge Ozone Reactor with Impedance Matching

Author(s):  
Bong-Seong Kim ◽  
Young-Chul Shin ◽  
Kwang-Cheol Ko
Author(s):  
Siqi Yu ◽  
Huijie Yan ◽  
Jiaqi Li ◽  
ting li ◽  
Yuying Wang ◽  
...  

Abstract The evolution of surface charge in surface dielectric barrier discharge (SDBD) is observed by using Pockels effect. SDBD is driven by sine AC and pulse dual-power supply voltage. The filamentary discharge and glow-like discharge are enhanced by superimposing positive pulse on sine trough and negative pulse on sine crest, respectively. The interval of enhanced discharge is adjusted by pulse repetition rate (PRF). The formation and decay of surface charges are analyzed at low PRF, and the accumulation effect is analyzed at high PRF. The results showed that the decay rates of charges decrease with increasing distance from the exposed electrode. When a positive pulse is superimposed on sine trough, the traces of positive charges are filaments with long extending lengths, which are the footprints of discharge channels. The lifetime of positive charges is hundreds of AC cycles (tens of milliseconds). Under certain conditions, subsequent glow-like discharge evolves as “flying” above the dielectric surface (3D propagation). Most of the negative charges are neutralized in subsequent filamentary discharge. Some negative charges accumulate downstream and exist longer than positive charges. In the case of negative pulses superimposed on sine crest, the enhanced glow-like discharge appears 3D propagation. The propagation distance is much smaller than that of positive pulse. Most of the negative charges are uniformly distributed near the exposed electrodes with a short lifetime (a few hundred microseconds) and are quickly neutralized in subsequent discharges. The occurrence of 3D propagation requires certain conditions and the mechanism needs further research.


Circuit World ◽  
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Xingquan Wang ◽  
Xiuyuan Lu ◽  
Wei Chen ◽  
Fengpeng Wang ◽  
Jun Huang ◽  
...  

Purpose This paper aims to improve the general circuit of driving and protection based on insulated gate bipolar transistor (IGBT) in dielectric barrier discharge power supply by designing a novel half-bridge inverter circuit with discrete components. Design/methodology/approach With one SG3524 chip, the structure based on discrete components is used to design the IGBT drive circuit. The driving waveform is isolated and sent out by photo-coupler 6N137. The protection circuit is realized by Hall sensor directly detecting the main circuit current, supplemented by a few components, including diodes, resistors, capacitors and triodes. It improves the reliability of the protection circuit. Findings In the driving circuit, the phase difference of signals from two channels are 180°. Moreover, when the duty cycle is set at 40%, it can ensure sufficient pulse width modulation response time. In the protection circuit, when over-current occurs, an intermittent output signal is automatically sent out. Furthermore, the over-current response time can be controlled independently. The peak voltage can be adjusted continuously from 0 to 30 kV with its frequency from 8 to 25 kHz and the power output up to 150 W. Originality/value The novel circuit of driving and protection makes not only its structure simpler and easier to be realized but also key parameters, such as frequency, the duty cycle and the driving voltage, continuously adjustable. Moreover, the power supply is suitable for other discharges such as corona discharge and jet discharge.


Electronics ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 1137 ◽  
Author(s):  
Neretti ◽  
Ricco

In this paper a high-voltage sinusoidal power supply controlled by Arduino DUE micro-controller is described. This generator can feed a dielectric barrier discharge (DBD) load with sinusoidal voltages up to 20 kV peak and frequencies in the range 10–60 kHz, with a maximum output power of 200 W. Output voltage can be produced either in a continuous mode, or with on/off modulation cycles, according to treatment/application requirements. This power source is equipped with on-board diagnostics used to measure the output voltage and the charge delivered to the load. With a sample frequency of 500 kHz, Arduino DUE allows to evaluate both the high voltage and the average power feeding the discharge without the use of an expensive external measurement setup. Lissajous techniques are utilized to calculate discharge average power in a quasi-real-time manner. When a load is connected to high-voltage terminals, a self-tuning procedure is carried out to obtain the best working frequency. This parameter allows to minimize power-electronic component stress and to maximize generator efficiency.


Sign in / Sign up

Export Citation Format

Share Document