scholarly journals Human IgG subclass antibodies to the 19 kilodalton carboxy terminal fragment of Plasmodium Falciparum merozoite surface protein 1 (MSP119) and predominance of the MAD20 allelic type of MSP1 in Uganda

2009 ◽  
Vol 77 (4) ◽  
Author(s):  
B Apio ◽  
A Nalunkuma ◽  
D Okello ◽  
E Riley ◽  
TG Egwang
2001 ◽  
Vol 69 (2) ◽  
pp. 1207-1211 ◽  
Author(s):  
David R. Cavanagh ◽  
Carlota Dobaño ◽  
Ibrahim M. Elhassan ◽  
Kevin Marsh ◽  
Ahmed Elhassan ◽  
...  

ABSTRACT Comparisons of immunoglobulin G (IgG) subclass responses to the major polymorphic region and to a conserved region of MSP-1 in three cohorts of African villagers exposed to Plasmodium falciparum revealed that responses to Block 2 are predominantly IgG3 whereas antibodies to MSP-119 are mainly IgG1. The striking dominance of IgG3 to Block 2 may explain the short duration of this response and also the requirement for continuous stimulation by malaria infection to maintain clinical immunity.


2009 ◽  
Vol 77 (12) ◽  
pp. 5659-5667 ◽  
Author(s):  
Maria Lazarou ◽  
José A. Guevara Patiño ◽  
Richard M. Jennings ◽  
Richard S. McIntosh ◽  
Jianguo Shi ◽  
...  

ABSTRACT Antigen-specific antibodies (Abs) to the 19-kDa carboxy-terminal region of Plasmodium falciparum merozoite surface protein 1 (MSP119) play an important role in protective immunity to malaria. Mouse monoclonal Abs (MAbs) 12.10 and 12.8 recognizing MSP119 can inhibit red cell invasion by interfering with MSP1 processing on the merozoite surface. We show here that this ability is dependent on the intact Ab since Fab and F(ab′)2 fragments derived from MAb 12.10, although capable of binding MSP1 with high affinity and competing with the intact antibody for binding to MSP1, were unable to inhibit erythrocyte invasion or MSP1 processing. The DNA sequences of the variable (V) regions of both MAbs 12.8 and 12.10 were obtained, and partial amino acid sequences of the same regions were confirmed by mass spectrometry. Human chimeric Abs constructed by using these sequences, which combine the original mouse V regions with human γ1 and γ3 constant regions, retain the ability to bind to both parasites and recombinant MSP119, and both chimeric human immunoglobulin G1s (IgG1s) were at least as good at inhibiting erythrocyte invasion as the parental murine MAbs 12.8 and 12.10. Furthermore, the human chimeric Abs of the IgG1 class (but not the corresponding human IgG3), induced significant NADPH-mediated oxidative bursts and degranulation from human neutrophils. These chimeric human Abs will enable investigators to examine the role of human Fcγ receptors in immunity to malaria using a transgenic parasite and mouse model and may prove useful in humans for neutralizing parasites as an adjunct to antimalarial drug therapy.


Sign in / Sign up

Export Citation Format

Share Document