scholarly journals The effects of land use types and soil depth on soil properties of Agedit watershed, Northwest Ethiopia

2018 ◽  
Vol 11 (1) ◽  
pp. 39 ◽  
Author(s):  
Eyayu Molla Fetene ◽  
Mamo Yalew Amera
2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Daniel Jaleta Negasa

Rapid land use changes have been observed in recent years in central Ethiopia. The shift from natural ecosystem to artificial ecosystem is the main direction of change. Therefore, this study was initiated to assess the effects of land use types on selected soil properties in Meja watershed, central highlands of Ethiopia. The randomized complete block design, including three adjacent land use types as treatments with three replications and two soil depths (0–15 and 15–30 cm), was applied in this study. There were significant differences in some soil properties among the three land use types. Lower soil pH and electric conductivity were observed in cultivated land soils than Eucalyptus woodlots soils. This has indicated the worsening soil conditions due to the shift from Eucalyptus woodlots to cultivated land. Less decomposition rate of the Eucalyptus leaves and debris collection for fuel could result in lowest soil organic carbon at the upper layer of Eucalyptus woodlot soils. However, the highest soil organic carbon at the lower layer was observed in Eucalyptus woodlot soils. The presence of highest soil potassium, cation exchange capacity, and exchangeable potassium in cultivated land soil was related to application of artificial fertilizers. Grassland soils have highest exchangeable sodium at the lower layer while highest soil carbon and sum cations at the upper layer, which can be related to the grass root biomass return and less surface runoff on grassland. There was the highest exchangeable sodium percentage on Eucalyptus woodlot soils at the upper layer; it can be due to the less surface nutrient movement and growth characteristics of the tree. The soils in cultivated land was shifted to more acidic and less electric conductivity.This shift can lead to soil quality deterioration that affects the productivity of the soils in the future.Nutrient leaching, application of artificial fertilizer, soil erosion, and continuous farming have affected the soil properties in cultivated land. The presence of highest exchangeable sodium percentage and lowest sum of cations at the upper layer of soil in Eucalyptus woodlot should be noted for management and decision makers. The previous negative speculations on Eucalyptus woodlots which can be related with the soil texture, soil moisture, bulk density, total nitrogen, exchangeable magnesium, calcium, and available sulfur should be avoided because there were no significant differences observed among the three land use types in the study area. The study recommends further studies on the effects of Eucalyptus on soil properties by comparing among different ages and species of Eucalyptus. Finally, planting of Eucalyptus on central highlands of Ethiopia should be supported by land use management decision.


2018 ◽  
Vol 1 (2) ◽  
pp. 74-79
Author(s):  
ADEBAYO, W. O. ◽  
OLOFIN, E. O.

The aim of this research is to examine the response of some soil properties to the changes in land cover/land use in Gbonyin Local Government Area of Ekiti State, Nigeria. Land use changes as a result of human activities have been identified as one of the greatest pressures to soil and forest resources. The change from natural vegetation land use to built-up and agricultural land uses is becoming rampant in Gbonyin Local Government Area of Ekiti State, Nigeria. The objective of this study was to examine the effects of land use change on the some soil properties. Two major land use types which include forest lands and residential lands uses were explored. Soil samples were collected at the depth of 0 on 30cm through the use of soil auger from ten different locations in each of the two land use types in the study area making twenty soil samples. The use of t-test statistical tool was implored on the laboratory results in order to test for the differences between the soil in forest and residential land use types. Results revealed that the soil physico-chemical properties differed significantly between the sites. Chemical properties of the soil were found to be generally low in residential land use while they were high in vegetation land use. Bulk density was high in residential land use while it was low in forest land use.


2021 ◽  
Author(s):  
Getahun Haile ◽  
Mulugeta Lemenih ◽  
Fisseha Itanna ◽  
Beyene Teklu ◽  
Getachew Agegnehu

Abstract Background Aim: Land use change causes a remarkable change in soil properties. The nature of change depends on multiple factors such as soil type, type and intensity of land use, climate, and the like. This study investigated the variation in soil physicochemical properties across five common land use practices i.e., enset system, farmland, and grazing-land (closed and open), and Eucalyptus woodlots practiced on originally same soil type and comparable topographic and climatic settings.Methods: A total of 105 disturbed and undisturbed soil samples [5 treatments (land use types) *7 replications (household)* 3 soil depth layers: 0–15cm, 15–30 cm, 30–45cm] were collected for selected soil chemical and physical analyses. Standard soil analytical procedures were followed in carrying out soil analysis. To meet the assumptions of normal distribution and homogeneity of variances, soil data on available phosphors were log-transformed before statistical analysis was undertaken and reported after back transformation. Two way analysis of variable were used to investigate the effects of land use and soil depth and their interaction on soil properties and when the analysis showed a significant difference (p <0.05) among land use and soil depth men separation were made using Turkey’s pairwise comparisons.Results: There were significant differences in physical and chemical properties of soil across land use and soil depth categories. Enset system had significantly higher pH, available phosphorus (P), exchangeable potassium (K+), soil organic carbon (SOC), and total nitrogen (TN) and their stocks than other land use types. Enset fields had higher SOC (78.4%) and soil TN (75%), and SOC and TN stocks of (66%) and (58%), respectively than cereal farmland. This study had also revealed a less expected finding of higher soil organic carbon and total nitrogen under Eucalyptus wood than farm land. Soil carbon and total nitrogen stocks showed a decreasing trend of enset system> closed grazing-land > eucalyptus woodlot > open grazing-land > farmland 0-45cm.Conclusion: Overall, some land use systems (e. g. enset agroforestry) improve the soil biophysical and chemical properties, while others such as cereal production degrade the soil. Hence appropriate land and soil management intervention should be promptly adapted to mitigating the continuous loss of nutrient from the dominantly practiced cereal farm land through maintaining crop residues, manure, crop rotation and scaling up agro-forestry system.


2021 ◽  
Author(s):  
Yawen Li ◽  
Xingwu Duan ◽  
Ya Li ◽  
Yuxiang Li ◽  
Lanlan Zhang

&lt;p&gt;Changes in land use can result in soil erosion and the loss of soil organic carbon (SOC). However, the individual contribution of different land use types on SOC variability as well as the combined impacts of land use and soil erosion are still unclear. The aims of the present study were to: (1) evaluate soil erosion and SOC contents under different land use types, (2) identify the influences of soil depth and land use on SOC content, and (3) determine the contribution of land use and soil erosion on SOC variability. We assessed the SOC and total soil nitrogen (TSN) contents under three types of land use in the dry-hot valley in southern China. Caesium-137 (&lt;sup&gt;137&lt;/sup&gt;Cs) and excess lead-210 (&lt;sup&gt;210&lt;/sup&gt;Pb&lt;sub&gt;ex&lt;/sub&gt;) contents were also measured to determine soil-erosion rates. Land use was found to significantly affect soil erosion, and erosion rates were higher in orchard land (OL) relative to farmland (FL), which is in contrast with previous study results. SOC and TSN contents varied significantly between the three land use types, with highest values in forest land (FRL) and lowest values in OL. SOC was found to decrease with decreasing soil depth; the highest rate of reduction occurred in the reference site (RS), followed by FRL and FL. The interaction between soil erosion and land use significantly impacted SOC in the soil surface layer (0&amp;#8211;12 cm); the direct impact of soil erosion accounted for 1.5% of the SOC variability, and the direct or indirect effects of land use accounted for the remainder of the variability. SOC content in deep soil was mainly affected by factors related to land uses (89.0%). This quantitative study furthers our understanding on the interactive mechanisms of land use and soil erosion on changes in soil organic carbon.&lt;/p&gt;


2021 ◽  
Author(s):  
Selma Yaşar Korkanç ◽  
Mustafa Korkanç ◽  
Muhammet Hüseyin Mert ◽  
Abdurrahman Geçili ◽  
Yusuf Serengil

Abstract This study aims the effects of land use changes on the carbon storage capacity and some soil properties of The Sultan Marshes was partially drained during the middle of the last century and converted to other land uses. Undisturbed soil sampling was performed in different land use types (rangelands, shrubs, marsh, agriculture, and dried lake area) in the wetland area at depths of 0-50 cm, and soil organic carbon (SOC), bulk density, and carbon stocks of soils for each land use type were calculated at 10 cm soil depth levels. Furthermore, disturbed soil samples were taken at two soil depths (0-20 cm and 20-40 cm), and the particle size distribution, pH, electrical conductivity (EC), aggregate stability and dispersion ratio (DR) properties of the soils were analyzed. Data were processed using ANOVA, Duncan’s test, and Pearson’s correlation analysis. The soil properties affected by land use change were SOC, carbon stock, pH, EC, aggregate stability, clay, silt, sand contents, and bulk density. SOC and carbon stocks were high in rangeland, marsh, and shrub land, while they were low in agriculture and drained lake areas. As the soil depth increased, SOC and carbon stock decreased. The organic carbon content of the soils exhibited positive relationships with aggregate stability, clay, and carbon stock, while it showed a negative correlation with bulk density, pH, and DR. The results showed that the drainage and conversion of the wetland caused a significant decrease in the carbon contents of the soils.


Soil Research ◽  
2011 ◽  
Vol 49 (7) ◽  
pp. 606 ◽  
Author(s):  
Peng-Tao Guo ◽  
Wei Wu ◽  
Hong-Bin Liu ◽  
Mao-Fen Li

Knowledge about soil properties associated with land use and topographical attributes is vital for modelling soil–landscape relationships and establishing sustainable on-field management practices. Our study focuses on an arable area in south-western China, where paddy fields and vegetable growing are dominant land uses. These are representative of millions of hectares of farmland in south-western China. Samples from 120 sites were collected according to a gridded sampling scheme and analysed. Land-use map units were delineated at a scale of 1 : 2000 from field survey. Topographical indicators (elevation, aspect, slope) were extracted from a digital elevation model with a resolution of 2 m. One-way and two-way analyses of variance and Pearson correlations were adopted to investigate the effects of land use and topographical variables on the selected soil properties: pH, organic matter (OM), ammonium-nitrogen (N), available phosphorus (P), available potassium (K), exchangeable calcium (Ca), and exchangeable magnesium (Mg). Statistically significant differences were found for OM, P, Ca, Mg, and pH between the land-use types and elevation gradient as well as slope classes. Mean contents of OM and P in paddy fields (lower and flat locations) were lower than in vegetable lands (higher and steep places) (P < 0.05). Mean values of Ca, Mg, and pH in paddy fields were higher than in vegetable lands (P < 0.05). Further analysis combining with management practice demonstrated that the redistribution of pH, OM, N, P, Ca, and Mg was mainly controlled by the interactive effects of topography and land use. Therefore, interactions between topography and land-use types need to be considered in regional soil properties inventory assessments.


Jurnal Solum ◽  
2007 ◽  
Vol 4 (1) ◽  
pp. 5
Author(s):  
Syafrimen Yasin ◽  
Gusnidar Gusnidar ◽  
Dedy Iskandar

A research conducted in Sungai Rumbai, Dharmasraya Regency and in Soil Laboratory Andalas university was aimed to evaluate soil fertility status on the depth below 0-20 cm from several land use types , especially under Mixed Garden and annual cultivated dryland soil.  Soil samples were taken on Ultisol at 0-8% slope (late-waving soil surface).  Land use types evaluated were forest, annual cultivated dryland, bush land, rangeland covered by Imperata cylindrica and mixed garden.  Composite soil samples for soil chemical analysis were taken on the 0-20 cm soil depth with four replications, and 5 drillings for each replication.  Undisturbed soil samples by using sample ring were used to analyze sol bulk volume.  The data resulted were compared to the criteria and were statistically tested using Analysis of Variance and then were continued by LSD at 5% level.  From the results of analyses could be concluded that land use  for mixed garden had the higher Organic Carbon (OC) content and the lower bulk volume (BV) than those for annual cultivated dryland soil.Key Words: Degradasi Lahan, Kebun Campuran, Tegalan


Sign in / Sign up

Export Citation Format

Share Document