Effects of land use on spatial patterns of soil properties in a rocky mountain area of Northern China

2014 ◽  
Vol 8 (2) ◽  
pp. 1181-1194 ◽  
Author(s):  
C. L. Liu ◽  
Y. Z. Wu ◽  
Q. J. Liu
2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Daniel Jaleta Negasa

Rapid land use changes have been observed in recent years in central Ethiopia. The shift from natural ecosystem to artificial ecosystem is the main direction of change. Therefore, this study was initiated to assess the effects of land use types on selected soil properties in Meja watershed, central highlands of Ethiopia. The randomized complete block design, including three adjacent land use types as treatments with three replications and two soil depths (0–15 and 15–30 cm), was applied in this study. There were significant differences in some soil properties among the three land use types. Lower soil pH and electric conductivity were observed in cultivated land soils than Eucalyptus woodlots soils. This has indicated the worsening soil conditions due to the shift from Eucalyptus woodlots to cultivated land. Less decomposition rate of the Eucalyptus leaves and debris collection for fuel could result in lowest soil organic carbon at the upper layer of Eucalyptus woodlot soils. However, the highest soil organic carbon at the lower layer was observed in Eucalyptus woodlot soils. The presence of highest soil potassium, cation exchange capacity, and exchangeable potassium in cultivated land soil was related to application of artificial fertilizers. Grassland soils have highest exchangeable sodium at the lower layer while highest soil carbon and sum cations at the upper layer, which can be related to the grass root biomass return and less surface runoff on grassland. There was the highest exchangeable sodium percentage on Eucalyptus woodlot soils at the upper layer; it can be due to the less surface nutrient movement and growth characteristics of the tree. The soils in cultivated land was shifted to more acidic and less electric conductivity.This shift can lead to soil quality deterioration that affects the productivity of the soils in the future.Nutrient leaching, application of artificial fertilizer, soil erosion, and continuous farming have affected the soil properties in cultivated land. The presence of highest exchangeable sodium percentage and lowest sum of cations at the upper layer of soil in Eucalyptus woodlot should be noted for management and decision makers. The previous negative speculations on Eucalyptus woodlots which can be related with the soil texture, soil moisture, bulk density, total nitrogen, exchangeable magnesium, calcium, and available sulfur should be avoided because there were no significant differences observed among the three land use types in the study area. The study recommends further studies on the effects of Eucalyptus on soil properties by comparing among different ages and species of Eucalyptus. Finally, planting of Eucalyptus on central highlands of Ethiopia should be supported by land use management decision.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Belayneh Bufebo ◽  
Eyasu Elias

Land use change from natural ecosystems to managed agroecosystems is one of the main causes of soil fertility decline. Severe soil erosion caused by agricultural expansion and poor management worsened soil nutrient depletion in cultivated outfields (crop lands). This study was conducted to examine the effects of land use and land cover changes (LU/LC) on selected soil physicochemical properties in the Shenkolla watershed. A total of 40 top soil samples at 0–20 cm depth were collected from four land use/land cover types (forest land, grazing land, cultivated outfield, and cultivated homestead garden fields). The analysis of variance (ANOVA) was applied to determine differences in soil parameters among land use types. Treatment means comparison was determined using the least significant difference (LSD) at 0.05 level of significances. The result indicated that there were significant P<0.05 differences among the four LU/LC types for soil characteristics. For most parameters evaluated, the most favorable soil properties were observed in the forest land, followed by homestead garden fields, while the least favorable soil properties were found in intensively cultivated outfields. Increase in the extent of cultivated land at the expense of forest cover associated with poor management has promoted significant loss of soil quality in intensively cultivated outfields. Reducing the land cover conversion and adopting proper management practices of the soil commonly used in homestead garden fields are very crucial in order to improve soil fertility in intensively cultivated outfields.


2007 ◽  
Vol 6 (11) ◽  
pp. 1369-1375 ◽  
Author(s):  
Wen-bin WU ◽  
Peng YANG ◽  
Hua-jun TANG ◽  
Luca Ongaro ◽  
Shibasaki Ryosuke

2015 ◽  
Vol 5 (1) ◽  
Author(s):  
S.M.F. Rabbi ◽  
Matthew Tighe ◽  
Manuel Delgado-Baquerizo ◽  
Annette Cowie ◽  
Fiona Robertson ◽  
...  

Solid Earth ◽  
2015 ◽  
Vol 6 (3) ◽  
pp. 857-868 ◽  
Author(s):  
Y. Mohawesh ◽  
A. Taimeh ◽  
F. Ziadat

Abstract. Land degradation resulting from improper land use and management is a major cause of declined productivity in the arid environment. The objectives of this study were to examine the effects of a sequence of land use changes, soil conservation measures, and the time since their implementation on the degradation of selected soil properties. The climate for the selected 105 km2 watershed varies from semi-arid sub-tropical to Mediterranean sub-humid. Land use changes were detected using aerial photographs acquired in 1953, 1978, and 2008. A total of 218 samples were collected from 40 sites in three different rainfall zones to represent different land use changes and variable lengths of time since the construction of stone walls. Analyses of variance were used to test the differences between the sequences of land use changes (interchangeable sequences of forest, orchards, field crops, and range), the time since the implementation of soil conservation measures, rainfall on the thickness of the A-horizon, soil organic carbon content, and texture. Soil organic carbon reacts actively with different combinations and sequences of land use changes. The time since stone walls were constructed showed significant impacts on soil organic carbon and the thickness of the surface horizon. The effects of changing the land use and whether the changes were associated with the construction of stone walls varied according to the annual rainfall. The changes in soil properties could be used as indicators of land degradation and to assess the impact of soil conservation programs. The results help in understanding the effects of land use changes on land degradation processes and carbon sequestration potential and in formulating sound soil conservation plans.


2008 ◽  
Vol 51 (1) ◽  
pp. 45-52 ◽  
Author(s):  
Xudong Li ◽  
Hua Fu ◽  
Xiaodong Li ◽  
Ding Guo ◽  
Xiaoyu Dong ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document