scholarly journals Estimation of the Quantity of Water in the Abandoned Underground Mine of Gold Fields Ghana Limited Tarkwa: A Potential Source to Augment Water Supply to Tarkwa Municipality

2019 ◽  
Vol 19 (1) ◽  
pp. 9-20
Author(s):  
J. K. Obosu ◽  
J. S. Y. Kuma ◽  
W. K. Buah

The Tarkwa district is an important gold mining area in the Southwestern part of Ghana. The main source of potable water supply to the Tarkwa Nsuaem Municipality is from the Bonsa River treatment plant managed by the Ghana Water Company Limited (GWCL). The River is under threat from serious contamination by illegal mining ("galamsey") activities within its catchment area. Consequently, the amount of water supplied to the Municipality has not kept pace with its growing population due to increasing treatment cost and supply difficulties. The need to find alternative and sustainable sources of potable water supply to augment that from GWCL to the Municipality has become imperative. A large void volume created as a result of the abandoned underground mine operated by Gold Fields Ghana Limited (GFGL), after its closure in 1999 has flooded. This potential water resource is being pumped out daily, and wasted, sometimes spilling-over to low lying areas around the mine when allowed to reach its decant level. This study estimated the quantity of water in the Abontiakoon Vertical Shaft (AVS) which is part of the large underground void using survey production figures and post-closure void filling parameters resulting in 2.8 x 106 m3 and 2.9 x 106 m3 respectively. The rate of recharge to the underground water was also estimated to ascertain the sustainability of the void water should it be considered for use by employing the model of predicting rebound on “void filling” basis and average dewatering rate before closure at 2 535 m3/day and 2 618 m3/day respectively; indicating that recharge to the AVS reservoir is about 6 x 106 gal/day or 30% of current daily water supply deficit in the TNM. The estimated potential volume of mine water in storage in the entire Tarkwa underground void is 32 x106 m3. Two samples of the mine water were taken in November 2011 and February 2015 for quality analysis, in order to have a fair knowledge of the water quality parameters. The quality of the underground water was found to be potentially good, and not likely to cause any health threats, or water quality problems. Depth sampling is recommended to determine the chemical profile of the reservoir. Keywords: Reservoir, Municipality, Bonsa River, Contamination, Tarkwa

1995 ◽  
Vol 32 (5-6) ◽  
pp. 209-216
Author(s):  
K. R. Imhoff

Since five million people have to rely on Ruhr water as a source for potable water supply, quality and quantity aspects of the river are very important for the region. In the last 20 years, 2.1 × 109 DM have been spent for water quality control in the Ruhr basin. The most important types of plants and the progress in river water quality are described.


2014 ◽  
Vol 9 (3) ◽  
pp. 386-391 ◽  
Author(s):  
M. N. Dammo ◽  
A. Y. Sangodoyin

Water quality and supply are central to the socio-economic development of any nation. Scarcity of potable water results in the construction of dams and water treatment plants. Unfortunately, provision of potable water through improvement and treatment may prove to be difficult because of the socio-economic activities around a dam. This study is aimed at assessing the socio-economic activities around the Alau Dam Maiduguri, and how they affect the quality of raw water supply to Maiduguri Water Treatment Plant. The data was generated through the administration of questionnaires, and by interview and water quality analysis of dam and irrigation sites. The samples were subjected to physical, chemical and biological analysis to assess the impact of socio economic activities on the dam water, and its suitabilityfor drinking and agricultural uses. Findings reveal pollution with high concentration of nitrate (260–230 mg-NO3/l), phosphate (22–28 mg/l) and Escherichia coli (13–24 n/100 mg). This arose from improper sanitary management, inadequate public education on irrigation,indiscriminate waste disposaland some farming practices. Regular monitoring of socio-economic activities around the dam, and doing away with unhealthy waste disposal practices are recommended to safeguard the raw water supply to the treatment plant.


10.1596/30593 ◽  
2018 ◽  
Author(s):  
Philippe Marin ◽  
Bambos Charalambous ◽  
Thierry Davy

1996 ◽  
Vol 34 (10) ◽  
pp. 141-149 ◽  
Author(s):  
J. P. Maree ◽  
G. J. van Tonder ◽  
P. Millard ◽  
T. C. Erasmus

Traditionally acid mine water is neutralised with lime (Ca(OH)2). Limestone (CaCO3) is a cheaper alternative for such applications. This paper describes an investigation aimed at demonstrating that underground mine water can be neutralised with limestone in a fluidised-bed. The contact time required between the limestone and the acid water, chemical composition of water before and after treatment, and economic feasibility of the fluidised bed neutralisation process are determined. A pilot plant with a capacity of 10k1/h was operated continuously underground in a gold mine. The underground water could be neutralised effectively using the limestone process. The pH of the water was increased from less than 3 to more than 7, the alkalinity of the treated water was greater than 120 mg/l (as CaCO3) and the contact time required between mine water and limestone was less than 10 min (the exact contact time depends on the limestone surface area). Chemical savings of 56.4% can be achieved compared to neutralisation with lime.


Sign in / Sign up

Export Citation Format

Share Document