scholarly journals Genetic diversity and population structure of farmers' maize varieties (Zea mays L.) from three selected states in Nigeria using SSR markers and their relationship with standard hybrids

2019 ◽  
Vol 21 (2) ◽  
pp. 261
Author(s):  
O.A. Adeyemo ◽  
O. Omidiji
2018 ◽  
Vol 66 (1) ◽  
pp. 243-257 ◽  
Author(s):  
Nawel Belalia ◽  
Antonio Lupini ◽  
Abderrahmane Djemel ◽  
Abdelkader Morsli ◽  
Antonio Mauceri ◽  
...  

2020 ◽  
Vol 52 (6) ◽  
Author(s):  
Anpei Zhou ◽  
Dan Zong ◽  
Peihua Gan ◽  
Yao Zhang ◽  
Dan Li ◽  
...  

2013 ◽  
Vol 38 (12) ◽  
pp. 2286-2296 ◽  
Author(s):  
Wen-Di YUE ◽  
Li-Bin WEI ◽  
Ti-De ZHANG ◽  
Chun LI ◽  
Hong-Mei MIAO ◽  
...  

Agronomy ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 182
Author(s):  
Jan Bocianowski ◽  
Kamila Nowosad ◽  
Barbara Wróbel ◽  
Piotr Szulc

Microsatellite or simple sequence repeat (SSR) markers have wide applicability for genetic analysis in crop plant improvement strategies. Marker-assisted selection is an important tool for plant breeders to increase the efficiency of a breeding process, especially for multigenic traits, highly influenced by the environment. In this paper, the relationships between SSR markers and 26 quantitative traits of hybrid maize varieties (Zea mays L.) were analyzed. Association analyses were performed based on 30 SSR primers in a set of thirteen hybrid maize varieties. A total of 112 SSR markers were detected in these genotypes. The number of alleles per locus ranged from 1 to 17, with the average number of alleles per locus equal to 3.7. The number of molecular markers associated with observed traits ranged from 1 (for the number of kernels in row, ears weight and fresh weight of one plant) to 14 (for damage of maize caused by P. nubilalis) in 2016 as well as from 1 (for soil plant analysis development—SPAD, the number of grains in ear and fresh weight of one plant) to 12 (for carotenoids content) in 2017. The sum of statistically significant associations between SSR markers and at least one trait was equal to one hundred sixty in 2016 as well as one hundred twenty-five in 2017. Marker trait associations (MTAs) were found on the basis of regression analysis. The proportion of the total phenotypic variances of individual traits explained by the marker ranged from 24.4% to 77.7% in the first year of study and from 24.3% to 77.9% in 2017. Twenty-two SSR markers performed a significant effect on at least one tested trait in both years of experiment. The three markers (phi021/4, phi036/3, and phi061/2) can be a good tool in marker-assisted selection because they allow simultaneous selection for multiple traits in both years of study, such as the number of kernels in row and the number of grains in ear (phi021/4), the number of plant after germination, the number of plants before harvest, and the number of ears (phi036/3), as well as moisture of grain and length of ears (phi061/2).


2021 ◽  
Author(s):  
Varun Hiremath ◽  
Kanwar Pal Singh ◽  
Neelu Jain ◽  
Kishan Swaroop ◽  
Pradeep Kumar Jain ◽  
...  

Abstract Genetic diversity and structure analysis using molecular markers is necessary for efficient utilization and sustainable management of gladiolus germplasm. Genetic analysis of gladiolus germplasm using SSR markers is largely missing due to scarce genomic information. In the present investigation, we report 66.66% cross transferability of Gladiolus palustris SSRs whereas 48% of Iris EST-SSRs were cross transferable across the gladiolus genotypes used in the study. A total of 17 highly polymorphic SSRs revealed a total 58 polymorphic loci ranging from two to six in each locus with an average of 3.41 alleles per marker. PIC values ranged from 0.11 to 0.71 with an average value of 0.48. Four SSRs were selectively neutral based on Ewens-Watterson test. Analysis of genetic structure of 84 gladiolus genotypes divided whole germplasm into two subpopulations. 35 genotypes were assigned to subpopulation 1 whereas 37 to subpopulation 2 and rest of the genotypes recorded as admixture. Analysis of molecular variance indicated maximum variance (53.59%) among individuals within subpopulations whereas 36.55% of variation observed among individuals within total population. Least variation (9.86%) was noticed between two subpopulations. Moderate (FST = 0.10) genetic differentiation of two subpopulations was observed. Grouping pattern of population structure was consistent with UPGMA dendrogram based on simple matching dissimilarity coefficient (ranged from 01.6 to 0.89) and PCoA. Genetic relationships assessed among the genotypes of respective clusters assist the breeders in selecting desirable parents for crossing. SSR markers from present study can be utilized for cultivar identification, conservation and sustainable utilization of gladiolus genotypes for crop improvement.


Sign in / Sign up

Export Citation Format

Share Document