scholarly journals Petrophysical evaluation of reservoir in a selected well (Z) in an onshore oil field (X) in the Niger Delta Basin, Nigeria using wireline logs

2019 ◽  
Vol 23 (5) ◽  
pp. 917
Author(s):  
E.J. Ighodaro ◽  
P.N. Okanigbuan ◽  
M.E. Okiotor ◽  
N. Idemudia
2016 ◽  
Vol 20 (2) ◽  
pp. 383-393
Author(s):  
T.M. Asubiojo ◽  
S.E. Okunuwadje

Reservoir sand bodies in Kwe Field, coastal swamp depobelt, onshore eastern Niger Delta Basin were evaluated from a composite log suite comprising gamma ray, resistivity, density and neutron logs of five (5) wells with core photographs of one (1) reservoir of one well. The aim of the study was to evaluate the petrophysical properties of the reservoirs while the objectives were to identify the depositional environment and predict the reservoir system quality and performance. The study identified three reservoir sand bodies in the field on the basis of their petrophysical properties and architecture. Reservoir A has an average NTG (61.4 %), Ø (27.50 %), K (203.99 md), Sw (31.9 %) and Sh (68.1 %); Reservoir B has an average NTG (65.6 %), Ø (26.0 %), K (95.90 md), Sw (28.87 %) and Sh (71.13 %) while Reservoir C has an average NTG (70.4 %), Ø (26.1 %), K (91.4 md), Sw (25.0 %) and Sh (75.03 %) and therefore show that the field has good quality sandstone reservoirs saturated in hydrocarbon. However, the presence of marine shales (or mudstones) interbedding with these sandstones may likely form permeability baffles to vertical flow and compartmentalize the reservoirs. These reservoirs may therefore have different flow units. Integrating wireline logs and core data, the reservoir sand bodies were interpreted as deposited in an estuarineshoreface setting thus indicating that the Kwe Field lies within the marginal marine mega depositional environment.Keywords: Estuarine, Shoreface, Reservoir, Sand, Kwe, field


2021 ◽  
Vol 2 (6) ◽  
pp. 53-57
Author(s):  
Godwin O. Aigbadon ◽  
Goriola O. Babatunde ◽  
Mu’awiya B. Aminu ◽  
Changde A. Nanfa ◽  
Simon D. Christopher

This study was carried out by using well logs to evaluate the depositional environments and hydrocarbon reservoirs in the Otuma oil field, Niger Delta basin. The gamma motif/model within- study interval in the drilled well shows blocky, symmetrical, and serrated shapes which suggest a deltaic front with mouth bar to a regressive - transgressive shoreface delta respectively. A correlation was done on the well logs across the wells and the ten well logs were used to evaluate the petrophysical characteristics of the reservoirs. The reservoirs showed highly porous and permeable channels where the wells were used for the characterization. The ten reservoirs were mapped at a depth range of 2395 m to 2919 m with thicknesses varying from 4m to 135m. The petrophysical results of the field showed that the porosity of the reservoirs ranges between 0.10 to 0.30, and permeability from 48 md to 290 md; the water saturation ranges from 0.39 to 0.52, and hydrocarbon saturation from the field 0.48 to 0.61. The By-passed hydrocarbons identified in low resistivity pay sands D4 and D3 at depth 2649 m to 2919 m, respectively were also evaluated and will be put to production in the field.


2020 ◽  
Vol 4 (2) ◽  
pp. 54-58
Author(s):  
Atat, J. G. ◽  
Akankpo, A. O. ◽  
Umoren, E. B. ◽  
Horsfall, O. I. ◽  
Ekpo, S. S

We considered the constants obtained for tau (𝜏)Field in the Niger Delta basin from well-log data of three wells (A,B,C) to investigate the effect of inclusion of these constants on density-velocity relation using Hampson Russell Software to generate density curve in tau field. The curves were compared to those generated from Gardner and Lindseth constants and in-situ density curves. Many researchers have worked on constants for density-velocity equations for different Fields; their results always differ from Gardner and Lindseth constants including the constants of Atat et al., 2020 which are considered in this investigation as Tau Field local fit constants. Our findings support the results of these researchers. Results indicate over estimation of density curves when using Gardner and Lindseth constants. The challenge is that in-situ density curves are not accurate due to sand-shale overlap of density values. The most improved and accurate result is given by the density curves obtained using the constants for specific sand and shale lithologies (local fits). This verifies the need for the determination of constants for local fit of the oil field under investigation. The pink curves truly indicate the density estimation for the tau field which is very reliable in the characterisation of reservoir.


2020 ◽  
Author(s):  
J. A Onyeji ◽  
O. A Ekun ◽  
A. O. Asaolu ◽  
A. P Mba ◽  
A. O. Owoyemi ◽  
...  

2020 ◽  
Vol 9 (1) ◽  
pp. 5
Author(s):  
Olubusayo A. Olatunji ◽  
Edward A. Okosun ◽  
Usman S. Onoduku ◽  
Yahya B. Alkali

Lithological analysis was carried out on 96 ditch cuttings samples from HD-001 well located within the shallow offshore Niger delta basin, Nigeria. Three lithofacies sequences were delineated by the integration of wireline logs textural/lithologic attritudes and the distribution of index accessory minerals. They are transitional paralic, paralic and marine paralic sequences. The lithologic, textural and wireline log data indicate that the entire interval studied in the HD-001 well belongs to the Agbada Formation. The Formation is made up of alternating sand and shale units which suggests rapid shoreline progradation. The grain size increases from essentially fine to medium-grained at the basal part of the well to dominantly coarser grain at the upper part. The index accessories recognize shallow marine to coastal deltaic settings environment of deposition. Sand bodies which represent sub-environments within those settings are deposited in sequences. Each sequence begins with a transgressive phase followed by significant regressions.   


2021 ◽  
Vol 13 (2) ◽  
pp. 601-610
Author(s):  
K. Itiowe ◽  
R. Oghonyon ◽  
B. K. Kurah

The sediment of #3 Well of the Greater Ughelli Depobelt are represented by sand and shale intercalation. In this study, lithofacies analysis and X-ray diffraction technique were used to characterize the sediments from the well. The lithofacies analysis was based on the physical properties of the sediments encountered from the ditch cuttings.  Five lithofacies types of mainly sandstone, clayey sandstone, shaly sandstone, sandy shale and shale and 53 lithofacies zones were identified from 15 ft to 11295 ft. The result of the X-ray diffraction analysis identified that the following clay minerals – kaolinite, illite/muscovite, sepiolite, chlorite, calcite, dolomite; with kaolinite in greater percentage. The non-clay minerals include quartz, pyrite, anatase, gypsum, plagioclase, microcline, jarosite, barite and fluorite; with quartz having the highest percentage. Therefore, due to the high percentage of kaolinite in #3 well, the pore filing kaolinite may have more effect on the reservoir quality than illite/muscovite, chlorite and sepiolite. By considering the physical properties, homogenous and heterogeneous nature of the #3 Well, it would be concluded that #3 Well has some prospect for petroleum and gas exploration.


Author(s):  
Joseph Nanaoweikule Eradiri ◽  
Ehimare Erhire Odafen ◽  
Ikenna Christopher Okwara ◽  
Ayonma Wilfred Mode ◽  
Okwudiri Aloysius Anyiam ◽  
...  

2017 ◽  
Vol 5 (1) ◽  
pp. 19
Author(s):  
Ubong Essien ◽  
Akaninyene Akankpo ◽  
Okechukwu Agbasi

Petrophysical analysis was performed in two wells in the Niger Delta Region, Nigeria. This study is aimed at making available petrophysical data, basically water saturation calculation using cementation values of 2.0 for the reservoir formations of two wells in the Niger delta basin. A suite of geophysical open hole logs namely Gamma ray; Resistivity, Sonic, Caliper and Density were used to determine petrophysical parameters. The parameters determined are; volume of shale, porosity, water saturation, irreducible water saturation and bulk volume of water. The thickness of the reservoir varies between 127ft and 1620ft. Average porosity values vary between 0.061 and 0.600; generally decreasing with depth. The mean average computed values for the Petrophysical parameters for the reservoirs are: Bulk Volume of Water, 0.070 to 0.175; Apparent Water Resistivity, 0.239 to 7.969; Water Saturation, 0.229 to 0.749; Irreducible Water Saturation, 0.229 to 0.882 and Volume of Shale, 0.045 to 0.355. The findings will also enhance the proper characterization of the reservoir sands.


Sign in / Sign up

Export Citation Format

Share Document