scholarly journals Depositional Environments and Reservoir Evaluation of Otuma Oil Field, Niger - Delta basin, Nigeria

2021 ◽  
Vol 2 (6) ◽  
pp. 53-57
Author(s):  
Godwin O. Aigbadon ◽  
Goriola O. Babatunde ◽  
Mu’awiya B. Aminu ◽  
Changde A. Nanfa ◽  
Simon D. Christopher

This study was carried out by using well logs to evaluate the depositional environments and hydrocarbon reservoirs in the Otuma oil field, Niger Delta basin. The gamma motif/model within- study interval in the drilled well shows blocky, symmetrical, and serrated shapes which suggest a deltaic front with mouth bar to a regressive - transgressive shoreface delta respectively. A correlation was done on the well logs across the wells and the ten well logs were used to evaluate the petrophysical characteristics of the reservoirs. The reservoirs showed highly porous and permeable channels where the wells were used for the characterization. The ten reservoirs were mapped at a depth range of 2395 m to 2919 m with thicknesses varying from 4m to 135m. The petrophysical results of the field showed that the porosity of the reservoirs ranges between 0.10 to 0.30, and permeability from 48 md to 290 md; the water saturation ranges from 0.39 to 0.52, and hydrocarbon saturation from the field 0.48 to 0.61. The By-passed hydrocarbons identified in low resistivity pay sands D4 and D3 at depth 2649 m to 2919 m, respectively were also evaluated and will be put to production in the field.

2019 ◽  
Vol 7 (1) ◽  
pp. 58
Author(s):  
G. O. Aigbadon ◽  
E. O. Akpunonu ◽  
S. O. Agunloye ◽  
A. Ocheli ◽  
O. O .Akakaru

This study was carried out integrating well logs and core to build reservoir model for the Useni-1 oil field. Core data and well logs were used to evaluate the petrophysical characteristics of the reservoirs. The paleodepositional environment was deduce from the wells and cores data. The depositional facies model showed highly permeable channels where the wells where positioned. The environments identified that the fluvial channel facies with highly permeable zones constituted the reservoirs. Four reservoirs were mapped at depth range of 8000ft to 8400ft with thicknesses varying from 20ft to 400ft. Petrophysical results showed that porosity of the reservoirs varied from 12% to 28 %; permeability from 145.70 md to 454.70md; water saturation from 21.65% to 54.50% and hydrocarbon saturation from 45.50% to 78.50 %. Core data and the gamma ray log trends with right boxcar trend indicate fluvial point bar and tidal channel fills in the lower delta plain setting. By-passed hydrocarbons were identified in low resistivity pay sands D1, D2 at depth of 7800 – 78100ft in the field.  


2017 ◽  
Vol 5 (1) ◽  
pp. 19
Author(s):  
Ubong Essien ◽  
Akaninyene Akankpo ◽  
Okechukwu Agbasi

Petrophysical analysis was performed in two wells in the Niger Delta Region, Nigeria. This study is aimed at making available petrophysical data, basically water saturation calculation using cementation values of 2.0 for the reservoir formations of two wells in the Niger delta basin. A suite of geophysical open hole logs namely Gamma ray; Resistivity, Sonic, Caliper and Density were used to determine petrophysical parameters. The parameters determined are; volume of shale, porosity, water saturation, irreducible water saturation and bulk volume of water. The thickness of the reservoir varies between 127ft and 1620ft. Average porosity values vary between 0.061 and 0.600; generally decreasing with depth. The mean average computed values for the Petrophysical parameters for the reservoirs are: Bulk Volume of Water, 0.070 to 0.175; Apparent Water Resistivity, 0.239 to 7.969; Water Saturation, 0.229 to 0.749; Irreducible Water Saturation, 0.229 to 0.882 and Volume of Shale, 0.045 to 0.355. The findings will also enhance the proper characterization of the reservoir sands.


2020 ◽  
Vol 21 (3) ◽  
pp. 9-18
Author(s):  
Ahmed Abdulwahhab Suhail ◽  
Mohammed H. Hafiz ◽  
Fadhil S. Kadhim

   Petrophysical characterization is the most important stage in reservoir management. The main purpose of this study is to evaluate reservoir properties and lithological identification of Nahr Umar Formation in Nasiriya oil field. The available well logs are (sonic, density, neutron, gamma-ray, SP, and resistivity logs). The petrophysical parameters such as the volume of clay, porosity, permeability, water saturation, were computed and interpreted using IP4.4 software. The lithology prediction of Nahr Umar formation was carried out by sonic -density cross plot technique. Nahr Umar Formation was divided into five units based on well logs interpretation and petrophysical Analysis: Nu-1 to Nu-5. The formation lithology is mainly composed of sandstone interlaminated with shale according to the interpretation of density, sonic, and gamma-ray logs. Interpretation of formation lithology and petrophysical parameters shows that Nu-1 is characterized by low shale content with high porosity and low water saturation whereas Nu-2 and Nu-4 consist mainly of high laminated shale with low porosity and permeability. Nu-3 is high porosity and water saturation and Nu-5 consists mainly of limestone layer that represents the water zone.


2019 ◽  
Vol 10 (1) ◽  
pp. 1-13
Author(s):  
K. F. Fozao ◽  
Lordon A. E. Djieto ◽  
E. A. A. Ali ◽  
C. M. Agying ◽  
D. M. Ndeh ◽  
...  

2017 ◽  
Vol 5 (1) ◽  
pp. 37 ◽  
Author(s):  
Inyang Namdie ◽  
Idara Akpabio ◽  
Agbasi Okechukwu .E.

Bonga oil field is located 120km (75mi) southeast of the Niger Delta, Nigeria. It is a subsea type development located about 3500ft water depth and has produced over 330 mmstb of hydrocarbon till date with over 16 oil producing and water injection wells. The producing formation is the Middle to Late Miocene unconsolidated turbidite sandstones with lateral and vertical homogeneities in reservoir properties. This work, analysis the petrophysical properties of the reservoir units for the purpose of modeling the effect of shale content on permeability in the reservoir. Turbidite sandstones are identified by gamma-ray log signatures as intervals with 26-50 API, while sonic, neutron, resistivity, caliper and other log data are applied to estimate volume of shale ranging between 0.972 v/v for shale intervals and 0.0549 v/v for turbidite sands, water saturation of 0.34 v/v average in most sand intervals, porosity range from 0.010 for shale intervals to 0.49 v/v for clean sands and permeability values for the send interval 11.46 to2634mD, for intervals between 7100 to 9100 ft., Data were analyzed using the Interactive Petrophysical software that splits the whole curve into sand and shale zones and estimates among other petrophysical parameters the shale contents of the prospective zones. While Seismic data revealed reservoir thickness ranging from 25ft to over 140ft well log data within the five wells have identified sands of similar thickness and estimated average permeability of700mD. Within the sand units across the five wells, cross plots of estimated porosity, volume of shale and permeability values reveal strong dependence of permeability on shale volume and a general decrease in permeability in intervals with shale volume. It is concluded that sand units with high shale contents that are from0.500 to0.900v/v will not provide good quality reservoir in the field.


1990 ◽  
Author(s):  
Olubunmi O. Owolabi ◽  
Godwin A. Okpobiri ◽  
Iyalia A. Obomanu

2021 ◽  
Vol 54 (1E) ◽  
pp. 88-102
Author(s):  
Qahtan Abdul Aziz ◽  
Hassan Abdul Hussein

Estimation of mechanical and physical rock properties is an essential issue in applications related to reservoir geomechanics. Carbonate rocks have complex depositional environments and digenetic processes which alter the rock mechanical properties to varying degrees even at a small distance. This study has been conducted on seventeen core plug samples that have been taken from different formations of carbonate reservoirs in the Fauqi oil field (Jeribe, Khasib, and Mishrif formations). While the rock mechanical and petrophysical properties have been measured in the laboratory including the unconfined compressive strength, Young's modulus, bulk density, porosity, compressional and shear -waves, well logs have been used to do a comparison between the lab results and well logs measurements. The results of this study revealed that petrophysical properties are consistent indexes to determine the rock mechanical properties with high performance capacity. Different empirical correlations have been developed in this study to determine the rock mechanical properties using the multiple regression analysis. These correlations are UCS-porosity, UCS-bulk density, UCS-Vs, UCs-Vp Es-Vs, Es-Vp, and Vs-Vp. (*). For example, the UCS-Vs correlation gives a good determination coefficient (R2= 0.77) for limestone and (R2=0.94) for dolomite. A comparison of the developed correlations with literature was also checked. This study presents a set of empirical correlations that can be used to determine and calibrate the rock mechanical properties when core samples are missing or incomplete.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Buraq Adnan. Al-Baldawi

Permeability is the property that permits the passage of fluids through the interconnected pores of a rock. It is one of the most important, most spatially variable, most uncertain, and  hence  least  predictable transport properties of porous formations. This paper represents a method to predict permeability of Khasib Formation in two wells (Am-1,Am-2) of Amara field using Multilinear regression (MLR) technique and various empirical models, such as Tixier’s, Timur’s and Coates and Dumanoir equations, are used to quantify permeability from well log calculations of porosity and irreducible water saturation. Measured porosity and permeability data from plugs of the available core intervals were used for validation of the predicated data from the logs. The calculated permeability values were compared with the laboratory measurements of core samples to those estimated from different empirical approaches, such as Tixier, Timur, Coates and Dumanoir models, as well as multilinear regression technique by using the statistical correlation coefficient (R2). The present study indicates that Multilinear regression (MLR) technique is the best method and the most validity to estimate permeability from well logs data.


2020 ◽  
pp. 2979-2990
Author(s):  
Buraq Adnan Al-Baldawi

The present study includes the evaluation of petrophysical properties and lithological examination in two wells of Asmari Formation in Abu Ghirab oil field (AG-32 and AG-36), Missan governorate, southeastern Iraq. The petrophysical assessment was performed utilizing well logs information to characterize Asmari Formation. The well logs available, such as sonic, density, neutron, gamma ray, SP, and resistivity logs, were converted into computerized data using Neuralog programming. Using Interactive petrophysics software, the environmental corrections and reservoir parameters such as porosity, water saturation, hydrocarbon saturation, volume of bulk water, etc. were analyzed and interpreted. Lithological, mineralogical, and matrix recognition studies were performed using porosity combination cross plots. Petrophysical characteristics were determined and plotted as computer processing interpretation (CPI) using Interactive Petrophysics program. Based on petrophysical properties, Asmari Reservoir in Abu Ghirab oil field is classified into three sub formations: Jeribe/ Euphrates and Kirkuk group which is divided into two zones: upper Kirkuk zone, and Middle-Lower Kirkuk zone. Interpretation of well logs of Asmari Formation indicated a commercial Asmari Formation production with medium oil evidence in some ranges of the formation, especially in the upper Kirkuk zone at well X-1. However, well X-2, especially in the lower part of Jeribe/ Euphrates and Middle-Lower Kirkuk zone indicated low to medium oil evidence. Lithology of Asmari Formation demonstrated a range from massive dolomite in Jeribe/ Euphrates zone to limestone in upper Kirkuk zone and limestone and sandstone in middle-lower Kirkuk zone, whereas mineralogy of the reservoir showed calcite and dolomite with few amounts of anhydrite.


Sign in / Sign up

Export Citation Format

Share Document