scholarly journals Incorporation of human factors into a Discrete Event Simulation Model for human centred assembly performance evaluation

2021 ◽  
Vol 40 (3) ◽  
pp. 437-448
Author(s):  
M.I. Abubakar ◽  
Q. Wang

Discrete Event Simulation (DES) tool is commonly used for the design, analysis, and evaluation of manufacturing systems. Human centred assembly systems offer better system flexibility and responsiveness due to inherent human intelligence and problem-solving abilities; human can deal with product variations and production volumes; and can always adapt themselves to multiple tasks after learning process. Nevertheless, human performance can be unpredictable, and may alter over time due to varying psychological and physiological states, these are often overlooked by researchers when designing, implementing, or evaluating a manufacturing system. In this paper a user-friendly integrated DES method was proposed to enable manufacturing system designers to investigate overall performance of human centred system considering effects of selected human factors. the method can permit manufacturing system designers to evaluate overall manufacturing system performance with considerations of parameters of human factors at early design stage. A case study was carried out using integrated approach; simulation results demonstrate the applicability of this approach.

2003 ◽  
Vol 02 (01) ◽  
pp. 71-87 ◽  
Author(s):  
A. OYARBIDE ◽  
T. S. BAINES ◽  
J. M. KAY ◽  
J. LADBROOK

Discrete event simulation is a popular aid for manufacturing system design; however in application this technique can sometimes be unnecessarily complex. This paper is concerned with applying an alternative technique to manufacturing system design which may well provide an efficient form of rough-cut analysis. This technique is System Dynamics, and the work described in this paper has set about incorporating the principles of this technique into a computer based modelling tool that is tailored to manufacturing system design. This paper is structured to first explore the principles of System Dynamics and how they differ from Discrete Event Simulation. The opportunity for System Dynamics is then explored, and this leads to defining the capabilities that a suitable tool would need. This specification is then transformed into a computer modelling tool, which is then assessed by applying this tool to model an engine production facility.


2017 ◽  
Vol 39 (5) ◽  
pp. 615
Author(s):  
Rafael De Carvalho Miranda ◽  
Cibele Nogueira Paiva ◽  
José Arnaldo Barra Montevechi ◽  
Tábata Fernades Pereira

Discrete-Event Simulation (DES) is concerned with system and modeling of that system, where the state of the system is transformed at different discrete points from time to time, and several event occurs from time to time and the changes in state variables will transform then activities/attributes connected to these state variables changes according to the event. It is a robust methodology in the manufacturing industry for strategic, tactical, and operational applications for an organization, and yet organizations ignore to use simulation and do not rely on it. Moreover, companies that are using DES are not using the potential benefits but merely used as a short-hand basis for problems like bottlenecks, optimization, and in later stages of production like PLM, this paper aims to apply and analyze Discrete-Event Simulation through a Manufacturing System. The work describes here is to understand the concept of simulation for a system and to practice Discrete Event methodology


2021 ◽  
Author(s):  
Petrit Dode

This action research thesis aimed to: 1) develop and test a viable Discrete Event Simulation and Human Factors Modeling approach for an Ontario based telecommunication company, and 2) identify the factors that affect the uptake and application of the approach in work system design. This approach, which was validated at the Company, incorporated fatigue dose and learning curves in a Discrete Event Simulation model. The barriers to uptake included: Time constraints, lack of technological knowledge and initial cost. The uptake facilitators were: High frequency products produced, clear value added to leadership, defects reduction and the Company being open to new technology. In addition to helping design a manual assembly line with fewer bottlenecks and reduce the human factors risks for the employee, the developed approach showed a 26% correlation with quality defects. Further research is recommended to identify additional human factors and their benefits.


2016 ◽  
Vol 9 (2) ◽  
pp. 432 ◽  
Author(s):  
Todd Frazee ◽  
Charles Standridge

Purpose: Few studies comparing manufacturing control systems as they relate to high-mix, low-volume applications have been reported. This paper compares two strategies, constant work in process (CONWIP) and Paired-cell Overlapping Loops of Cards with Authorization (POLCA), for controlling work in process (WIP) in such a manufacturing environment. Characteristics of each control method are explained in regards to lead time impact and thus, why one may be advantageous over the other.Design/methodology/approach: An industrial system in the Photonics industry is studied. Discrete event simulation is used as the primary tool to compare performance of CONWIP and POLCA controls for the same WIP level with respect to lead time. Model verification and validation are accomplished by comparing historic data to simulation generated data including utilizations. Both deterministic and Poisson distributed order arrivals are considered. Findings: For the system considered in this case study, including order arrival patterns, a POLCA control can outperform a CONWIP parameter in terms of average lead time for a given level of WIP. At higher levels of WIP, the performance of POLCA and CONWIP is equivalent. Practical Implications: The POLCA control helps limit WIP in specific áreas of the system where the CONWIP control only limits the overall WIP in the system. Thus, POLCA can generate acceptably low lead times at lower levels of WIP for conditions equivalent to the HMLV manufacturing systems studied.Originality/value: The study compliments and extends previous studies of  CONWIP and POLCA performance to a HMLV manufacturing environment. It demonstrates the utility of discrete event simulation in that regard. It shows that proper inventory controls in bottleneck áreas of a system can reduce average lead time.


Sign in / Sign up

Export Citation Format

Share Document