scholarly journals Analysis of Effects of Selected Aerosol Particles to the Global Climate Change and Health using Remote Sensing data: The Focus on Africa

Author(s):  
G Rushingabigwi ◽  
W Kalisa ◽  
P Nsengiyumva ◽  
F Zimulinda ◽  
D Mukanyiligira ◽  
...  

The desert's dust and anthropogenic biomass burning's black carbon (BC) in the tropical regions are associated with many effects on climate and air quality. The dust and BC are the selected aerosols, which affect health by polluting the breathable air. This research discusses the effects of both the aerosols, especially while they interact with the clouds. The respective aerosol extinction optical thickness (AOT) extinction was analysed with the sensible heat from Turbulence. The research purposes to quantitatively study the remote sensing data for fine particulate matter, PM2.5, heterogeneously mixing both the dust and the pulverized black carbon's soot or ash, to analyse at which levels PM2.5 can endanger human health in the sub-Saharan region. The mainly analysed data had been assimilated from different remote sensing tools; the Goddard interactive online visualization and analysis infrastructure (GIOVANNI) was in the centre of data collection; GIS, the research data analysis software. In results, the rise and fall of the averaged sensible heat were associated with the rise and fall of averaged aerosol extinction AOT; the direct effects of the selected aerosols on the clouds are also presented. Regarding the health effects, PM2.5 quantities are throughout beyond the tolerably recommended quantity of 25μg/m3; thus, having referred to erstwhile research, inhabitants would consume food and drug supplements which contain vanillic acid during dusty seasons. Keywords: Geographic Information System (GIS), remotely sensed data, spatio-temporal (data) analysis

Author(s):  
N. Aparna ◽  
A. V. Ramani ◽  
R. Nagaraja

Remote Sensing along with Geographical Information System (GIS) has been proven as a very important tools for the monitoring of the Earth resources and the detection of its temporal variations. A variety of operational National applications in the fields of Crop yield estimation , flood monitoring, forest fire detection, landslide and land cover variations were shown in the last 25 years using the Remote Sensing data. The technology has proven very useful for risk management like by mapping of flood inundated areas identifying of escape routes and for identifying the locations of temporary housing or a-posteriori evaluation of damaged areas etc. The demand and need for Remote Sensing satellite data for such applications has increased tremendously. This can be attributed to the technology adaptation and also the happening of disasters due to the global climate changes or the urbanization. However, the real-time utilization of remote sensing data for emergency situations is still a difficult task because of the lack of a dedicated system (constellation) of satellites providing a day-to-day revisit of any area on the globe. The need of the day is to provide satellite data with the shortest delay. Tasking the satellite to product dissemination to the user is to be done in few hours. Indian Remote Sensing satellites with a range of resolutions from 1 km to 1 m has been supporting disasters both National & International. In this paper, an attempt has been made to describe the expected performance and limitations of the Indian Remote Sensing Satellites available for risk management applications, as well as an analysis of future systems Cartosat-2D, 2E ,Resourcesat-2R &RISAT-1A. This paper also attempts to describe the criteria of satellite selection for programming for the purpose of risk management with a special emphasis on planning RISAT-1(SAR sensor).


2009 ◽  
Vol 1 (1) ◽  
Author(s):  
Biswajeet Pradhan

AbstractThis paper summarizes the findings of groundwater potential zonation mapping at the Bharangi River basin, Thane district, Maharastra, India, using Satty’s Analytical Hierarchal Process model with the aid of GIS tools and remote sensing data. To meet the objectives, remotely sensed data were used in extracting lineaments, faults and drainage pattern which influence the groundwater sources to the aquifer. The digitally processed satellite images were subsequently combined in a GIS with ancillary data such as topographical (slope, drainage), geological (litho types and lineaments), hydrogeomorphology and constructed into a spatial database using GIS and image processing tools. In this study, six thematic layers were used for groundwater potential analysis. Each thematic layer’s weight was determined, and groundwater potential indices were calculated using groundwater conditions. The present study has demonstrated the capabilities of remote sensing and GIS techniques in the demarcation of different groundwater potential zones for hard rock basaltic basin.


Author(s):  
Ram L. Ray ◽  
Maurizio Lazzari ◽  
Tolulope Olutimehin

Landslide is one of the costliest and fatal geological hazards, threatening and influencing the socioeconomic conditions in many countries globally. Remote sensing approaches are widely used in landslide studies. Landslide threats can also be investigated through slope stability model, susceptibility mapping, hazard assessment, risk analysis, and other methods. Although it is possible to conduct landslide studies using in-situ observation, it is time-consuming, expensive, and sometimes challenging to collect data at inaccessible terrains. Remote sensing data can be used in landslide monitoring, mapping, hazard prediction and assessment, and other investigations. The primary goal of this chapter is to review the existing remote sensing approaches and techniques used to study landslides and explore the possibilities of potential remote sensing tools that can effectively be used in landslide studies in the future. This chapter also provides critical and comprehensive reviews of landslide studies focus¬ing on the role played by remote sensing data and approaches in landslide hazard assessment. Further, the reviews discuss the application of remotely sensed products for landslide detection, mapping, prediction, and evaluation around the world. This systematic review may contribute to better understanding the extensive use of remotely sensed data and spatial analysis techniques to conduct landslide studies at a range of scales.


2011 ◽  
pp. 171-206 ◽  
Author(s):  
Luis Gómez-Chova ◽  
Jordi Muñoz-Marí ◽  
Valero Laparra ◽  
Jesús Malo-López ◽  
Gustavo Camps-Valls

Sign in / Sign up

Export Citation Format

Share Document