scholarly journals Remote Sensing Approaches and Related Techniques to Map and Study Landslides

Author(s):  
Ram L. Ray ◽  
Maurizio Lazzari ◽  
Tolulope Olutimehin

Landslide is one of the costliest and fatal geological hazards, threatening and influencing the socioeconomic conditions in many countries globally. Remote sensing approaches are widely used in landslide studies. Landslide threats can also be investigated through slope stability model, susceptibility mapping, hazard assessment, risk analysis, and other methods. Although it is possible to conduct landslide studies using in-situ observation, it is time-consuming, expensive, and sometimes challenging to collect data at inaccessible terrains. Remote sensing data can be used in landslide monitoring, mapping, hazard prediction and assessment, and other investigations. The primary goal of this chapter is to review the existing remote sensing approaches and techniques used to study landslides and explore the possibilities of potential remote sensing tools that can effectively be used in landslide studies in the future. This chapter also provides critical and comprehensive reviews of landslide studies focus¬ing on the role played by remote sensing data and approaches in landslide hazard assessment. Further, the reviews discuss the application of remotely sensed products for landslide detection, mapping, prediction, and evaluation around the world. This systematic review may contribute to better understanding the extensive use of remotely sensed data and spatial analysis techniques to conduct landslide studies at a range of scales.

2020 ◽  
Vol 12 (24) ◽  
pp. 4139
Author(s):  
Ruirui Wang ◽  
Wei Shi ◽  
Pinliang Dong

The nighttime light (NTL) on the surface of Earth is an important indicator for the human transformation of the world. NTL remotely sensed data have been widely used in urban development, population estimation, economic activity, resource development and other fields. With the increasing use of artificial lighting technology in agriculture, it has become possible to use NTL remote sensing data for monitoring agricultural activities. In this study, National Polar Partnership (NPP)-Visible Infrared Imaging Radiometer Suite (VIIRS) NTL remote sensing data were used to observe the seasonal variation of artificial lighting in dragon fruit cropland in Binh Thuan Province, Vietnam. Compared with the statistics of planted area, area having products and production of dragon fruit by district in the Statistical Yearbook of Binh Thuan Province 2018, values of the mean and standard deviation of NTL brightness have significant positive correlations with the statistical data. The results suggest that the NTL remotely sensed data could be used to reveal some agricultural productive activities such as dragon fruits production accurately by monitoring the seasonal artificial lighting. This research demonstrates the application potential of NTL remotely sensed data in agriculture.


Author(s):  
Albert Rango ◽  
Jerry Ritchie

Like other rangelands, little application of remote sensing data for measurement and monitoring has taken place within the Jornada Basin. Although remote sensing data in the form of aerial photographs were acquired as far back as 1935 over portions of the Jornada Basin, little reliance was placed on these data. With the launch of Earth resources satellites in 1972, a variety of sensors have been available to collect remote sensing data. These sensors are typically satellite-based but can be used from other platforms including ground-based towers and hand-held apparatus, low-altitude aircraft, and high-altitude aircraft with various resolutions (now as good as 0.61 m) and spectral capabilities. A multispectral, multispatial, and multitemporal remote sensing approach would be ideal for extrapolating ground-based point and plot knowledge to large areas or landscape units viewed from satellite-based platforms. This chapter details development and applications of long-term remotely sensed data sets that are used in concert with other long-term data to provide more comprehensive knowledge for management of rangeland across this basin and as a template for their use for rangeland management in other regions. In concert with the ongoing Jornada Basin research program of ground measurements, in 1995 we began to collect remotely sensed data from ground, airborne, and satellite platforms to provide spatial and temporal data on the physical and biological state of basin rangeland. Data on distribution and reflectance of vegetation were measured on the ground along preestablished transects with detailed vegetation surveys (cover, composition, and height); with hand-held and yoke-mounted spectral and thermal radiometers; from aircraft flown at different elevations with spectral and thermal radiometers, infrared thermal radiometers, multispectral video, digital imagers, and laser altimeters; and from space with Landsat Thematic Mapper (TM), IKONOS, QuickBird, Terra/Aqua, and other satellite-based sensors. These different platforms (ground, aircraft, and satellite) allow evaluation of landscape patterns and states at different scales. One general use of these measurements will be to quantify the hydrologic budget and plant response to changes in components in the water and energy balance at different scales and to evaluate techniques of scaling data.


Author(s):  
Nikifor Ostanin ◽  
Nikifor Ostanin

Coastal zone of the Eastern Gulf of Finland is subjected to essential natural and anthropogenic impact. The processes of abrasion and accumulation are predominant. While some coastal protection structures are old and ruined the problem of monitoring and coastal management is actual. Remotely sensed data is important component of geospatial information for coastal environment research. Rapid development of modern satellite remote sensing techniques and data processing algorithms made this data essential for monitoring and management. Multispectral imagers of modern high resolution satellites make it possible to produce advanced image processing, such as relative water depths estimation, sea-bottom classification and detection of changes in shallow water environment. In the framework of the project of development of new coast protection plan for the Kurortny District of St.-Petersburg a series of archival and modern satellite images were collected and analyzed. As a result several schemes of underwater parts of coastal zone and schemes of relative bathymetry for the key areas were produced. The comparative analysis of multi-temporal images allow us to reveal trends of environmental changes in the study areas. This information, compared with field observations, shows that remotely sensed data is useful and efficient for geospatial planning and development of new coast protection scheme.


2021 ◽  
Vol 13 (9) ◽  
pp. 1715
Author(s):  
Foyez Ahmed Prodhan ◽  
Jiahua Zhang ◽  
Fengmei Yao ◽  
Lamei Shi ◽  
Til Prasad Pangali Sharma ◽  
...  

Drought, a climate-related disaster impacting a variety of sectors, poses challenges for millions of people in South Asia. Accurate and complete drought information with a proper monitoring system is very important in revealing the complex nature of drought and its associated factors. In this regard, deep learning is a very promising approach for delineating the non-linear characteristics of drought factors. Therefore, this study aims to monitor drought by employing a deep learning approach with remote sensing data over South Asia from 2001–2016. We considered the precipitation, vegetation, and soil factors for the deep forwarded neural network (DFNN) as model input parameters. The study evaluated agricultural drought using the soil moisture deficit index (SMDI) as a response variable during three crop phenology stages. For a better comparison of deep learning model performance, we adopted two machine learning models, distributed random forest (DRF) and gradient boosting machine (GBM). Results show that the DFNN model outperformed the other two models for SMDI prediction. Furthermore, the results indicated that DFNN captured the drought pattern with high spatial variability across three penology stages. Additionally, the DFNN model showed good stability with its cross-validated data in the training phase, and the estimated SMDI had high correlation coefficient R2 ranges from 0.57~0.90, 0.52~0.94, and 0.49~0.82 during the start of the season (SOS), length of the season (LOS), and end of the season (EOS) respectively. The comparison between inter-annual variability of estimated SMDI and in-situ SPEI (standardized precipitation evapotranspiration index) showed that the estimated SMDI was almost similar to in-situ SPEI. The DFNN model provides comprehensive drought information by producing a consistent spatial distribution of SMDI which establishes the applicability of the DFNN model for drought monitoring.


Author(s):  
D. Varade ◽  
O. Dikshit

<p><strong>Abstract.</strong> Snow cover characterization and estimation of snow geophysical parameters is a significant area of research in water resource management and surface hydrological processes. With advances in spaceborne remote sensing, much progress has been achieved in the qualitative and quantitative characterization of snow geophysical parameters. However, most of the methods available in the literature are based on the microwave backscatter response of snow. These methods are mostly based on the remote sensing data available from active microwave sensors. Moreover, in alpine terrains, such as in the Himalayas, due to the geometrical distortions, the missing data is significant in the active microwave remote sensing data. In this paper, we present a methodology utilizing the multispectral observations of Sentinel-2 satellite for the estimation of surface snow wetness. The proposed approach is based on the popular triangle method which is significantly utilized for the assessment of soil moisture. In this case, we develop a triangular feature space using the near infrared (NIR) reflectance and the normalized differenced snow index (NDSI). Based on the assumption that the NIR reflectance is linearly related to the liquid water content in the snow, we derive a physical relationship for the estimation of snow wetness. The modeled estimates of snow wetness from the proposed approach were compared with in-situ measurements of surface snow wetness. A high correlation determined by the coefficient of determination of 0.94 and an error of 0.535 was observed between the proposed estimates of snow wetness and in-situ measurements.</p>


2009 ◽  
Vol 1 (1) ◽  
Author(s):  
Biswajeet Pradhan

AbstractThis paper summarizes the findings of groundwater potential zonation mapping at the Bharangi River basin, Thane district, Maharastra, India, using Satty’s Analytical Hierarchal Process model with the aid of GIS tools and remote sensing data. To meet the objectives, remotely sensed data were used in extracting lineaments, faults and drainage pattern which influence the groundwater sources to the aquifer. The digitally processed satellite images were subsequently combined in a GIS with ancillary data such as topographical (slope, drainage), geological (litho types and lineaments), hydrogeomorphology and constructed into a spatial database using GIS and image processing tools. In this study, six thematic layers were used for groundwater potential analysis. Each thematic layer’s weight was determined, and groundwater potential indices were calculated using groundwater conditions. The present study has demonstrated the capabilities of remote sensing and GIS techniques in the demarcation of different groundwater potential zones for hard rock basaltic basin.


2021 ◽  
Author(s):  
Simon Jirka ◽  
Benedikt Gräler ◽  
Matthes Rieke ◽  
Christian Autermann

&lt;p&gt;For many scientific domains such as hydrology, ocean sciences, geophysics and social sciences, geospatial observations are an important source of information. Scientists conduct extensive measurement campaigns or operate comprehensive monitoring networks to collect data that helps to understand and to model current and past states of complex environment. The variety of data underpinning research stretches from in-situ observations to remote sensing data (e.g., from the European Copernicus programme) and contributes to rapidly increasing large volumes of geospatial data.&lt;/p&gt;&lt;p&gt;However, with the growing amount of available data, new challenges arise. Within our contribution, we will focus on two specific aspects: On the one hand, we will discuss the specific challenges which result from the large volumes of remote sensing data that have become available for answering scientific questions. For this purpose, we will share practical experiences with the use of cloud infrastructures such as the German platform CODE-DE and will discuss concepts that enable data processing close to the data stores. On the other hand, we will look into the question of interoperability in order to facilitate the integration and collaborative use of data from different sources. For this aspect, we will give special consideration to the currently emerging new generation of standards of the Open Geospatial Consortium (OGC) and will discuss how specifications such as the OGC API for Processes can help to provide flexible processing capabilities directly within Cloud-based research data infrastructures.&lt;/p&gt;


2020 ◽  
Vol 13 (3) ◽  
pp. 1267-1284 ◽  
Author(s):  
Theo Baracchini ◽  
Philip Y. Chu ◽  
Jonas Šukys ◽  
Gian Lieberherr ◽  
Stefan Wunderle ◽  
...  

Abstract. The understanding of physical dynamics is crucial to provide scientifically credible information on lake ecosystem management. We show how the combination of in situ observations, remote sensing data, and three-dimensional hydrodynamic (3D) numerical simulations is capable of resolving various spatiotemporal scales involved in lake dynamics. This combination is achieved through data assimilation (DA) and uncertainty quantification. In this study, we develop a flexible framework by incorporating DA into 3D hydrodynamic lake models. Using an ensemble Kalman filter, our approach accounts for model and observational uncertainties. We demonstrate the framework by assimilating in situ and satellite remote sensing temperature data into a 3D hydrodynamic model of Lake Geneva. Results show that DA effectively improves model performance over a broad range of spatiotemporal scales and physical processes. Overall, temperature errors have been reduced by 54 %. With a localization scheme, an ensemble size of 20 members is found to be sufficient to derive covariance matrices leading to satisfactory results. The entire framework has been developed with the goal of near-real-time operational systems (e.g., integration into meteolakes.ch).


2019 ◽  
Vol 46 (22) ◽  
pp. 13234-13243 ◽  
Author(s):  
Dorleta Orúe‐Echevarría ◽  
Paola Castellanos ◽  
Joel Sans ◽  
Mikhail Emelianov ◽  
Ignasi Vallès‐Casanova ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document