scholarly journals Some physiochemical properties of termite mound soil and its effect on yield and yield components of maize (Zea mays L.) Under Greenhouse condition at Nekemte, western Ethiopia

2021 ◽  
Vol 44 (1) ◽  
pp. 38-46
Author(s):  
Temesgen Beyene ◽  
Emana Getu

Termite mound soil amends soil fertility and utilized as an alternative to npk fertilizers by smallholder farmers in Africa. Experiment was conducted in western Ethiopia to compare selected physical and chemical properties of mound soil (ms), Adjacent soil (as) and non-mound soil (nms) and the effect of these soils on maize plant growth and yield in the Greenhouse. In Limu district, Fitbako kebele, cultivated land was purposively selected for sampling. In the cultivated land, a plot of 100m x100m was delineated and three mounds within the plot were also purposively selected to collect composite soil sample for soil analysis and Greenhouse pot experiment. From each mound, 10kg soil each from bottom, middle and top (total= 30 kg) were collected and mixed to obtain working sample of 10 kg. About 30kg of adjacent soil 5m away from mound soils and Non-mound soil at the distance of 20 m away from mound soil at the depth of 0-30cm were collected and thoroughly mixed to make working sample of 10kg from each soil type. Three kilograms of mound soil, adjacent soil and non-mound soil each was put in separate plastic bucket for greenhouse pot experiment. About 100 gm of each soil type was used for selected physical and chemical properties analyses. The result obtained demonstrated that termite mound soil was significantly (P<0.05) high in bulk density (bd), moisture contents (mc), porosity (P), Soil pH, percent organic carbon (% oc) and percent organic matter (% om). Total Nitrogen (tn), average (av.) P, av. K, Exch.  Ca and Exch. Mg were also significantly (P<0.05) higher in mound soil in comparison with adjacent soil and non-mound soil. Maize plant growth traits and yield were significantly (P<0.05) high in mound soil. From the current study, it can be concluded that the use of npk fertilizer on plots having termite mound is not recommended. However, further research is needed on how to use mound soil on large plot of land

1997 ◽  
pp. 365-374 ◽  
Author(s):  
P. Noguera ◽  
M. Abad ◽  
R. Puchades ◽  
V. Noguera ◽  
A. Maquieira ◽  
...  

2006 ◽  
Vol 16 (1) ◽  
pp. 7-12 ◽  
Author(s):  
Amanda Wiberg ◽  
Richard Koenig ◽  
Teresa Cerny-Koenig

There is extensive variability in physical and chemical properties among brands of retail potting media. The purpose of this study was to assess variability in seed germination and plant growth responses among and within brands. Twenty-four different brands of media, and multiple bags of five brands, were purchased at nine retail stores. Tomato (Lycopersicon esculentum) seeds were germinated in 11 different brands of media and in media from different bags of four of the same brands. Marigold (Tagetes erecta) and petunia (Petunia×hybrida) were grown to flowering in 10 brands of media. Germination varied significantly among media brands and among bags of one of the brands. Plant performance also varied significantly, with several of the brands producing plants with few flowers, long times to flowering, and low shoot and root dry weights even though all treatments received uniform applications of a complete fertilizer solution three times per week. Few relationships could be discerned between individual physical and chemical properties of the media and plant performance. Results indicate improvements in quality among brands and quality control within brands are needed in the retail potting media industry. Quality assessment tools emphasizing plant performance could improve overall media quality.


HortScience ◽  
2010 ◽  
Vol 45 (10) ◽  
pp. 1522-1528 ◽  
Author(s):  
Shawna Loper ◽  
Amy L. Shober ◽  
Christine Wiese ◽  
Geoffrey C. Denny ◽  
Craig D. Stanley ◽  
...  

The urban soil environment is usually not conducive to healthy root growth and function, leading to problems with plant establishment, growth, and aesthetic quality. The objective of this study was to determine if the addition of compost with or without the application of shallow tillage or aeration will improve soil physical and chemical properties and plant growth compared with an unamended control in simulated new residential landscapes. Twenty-four mixed landscape plots were established in a randomized complete block design to simulate new residential landscapes. Each plot was constructed using 10 cm of subsoil fill material over a compacted field soil and planted with Stenotaphrum secundatum and mixed ornamental plant species. Composted dairy manure solids were applied as an organic soil amendment at a depth of 5 cm (≈256 Mg·ha−1) in combination with two mechanical soil treatments (tillage to 15 cm and plug aeration) for a total of five soil management treatments plus an untreated control. Soil physical and chemical properties, plant growth, and quality and plant tissue nutrient concentrations were assessed periodically to determine the effect of soil treatment on soil and plant quality. Applications of compost to soils significantly reduced soil bulk density and pH and increased soil organic matter, electrical conductivity, and Mehlich-1 phosphorus and potassium concentrations. All ornamental plant species, with the exception of Raphiolepis indica (L.) Lindl. ex Ker Gawl., exhibited more growth when grown in soils amended with composted dairy manure solids. In most instances, plant tissue nitrogen and phosphorus concentrations were higher for plants grown in soils receiving compost. Results of our study suggested that the addition of composted dairy manure solids to soils can improve soil properties and enhance plant growth in residential landscapes when sandy fill soils are used. In contrast, shallow tillage and aeration had little effect on soil properties or plant growth.


2021 ◽  
Author(s):  
Ran Chen ◽  
Weitao Jiang ◽  
Shaozhuo Xu ◽  
Hai Fan ◽  
Xuesen Chen ◽  
...  

Abstract Methyl bromide has been banned worldwide because it causes damage to the ozone layer and the environment. To find a substitute for methyl bromide, the relationships among fumigation, plant growth, and the microbial community in replant soil require further study. We performed pot and field experiments to investigate the effects of dazomet fumigation on soil properties and plant performance. Changes in soil microbial community structure and diversity were assessed using high-throughput sequencing, and plant physiological performance and soil physicochemical properties were also measured. Dazomet fumigation enhanced photosynthesis and promoted plant growth in replant soil; it altered soil physical and chemical properties and reduced soil enzyme activities, although these parameters gradually recovered over time. After dazomet fumigation, the dominant soil phyla changed, microbial diversity decreased significantly, the relative abundance of biocontrol bacteria such as Mortierella increased, and the relative abundance of pathogenic bacteria such as Fusarium decreased. Over the course of the experiment, the soil microbial flora changed dynamically, and soil enzyme activities and other physical and chemical properties also recovered to a certain extent. This result suggested that the effect of dazomet on soil microorganisms was temporary. However, fumigation also led to an increase in some resistant pathogens, such as Trichosporon, that affect soil function and health. Therefore, it is necessary to consider potential negative impacts of dazomet on the soil environment and to perform active environmental risk management in China.


2017 ◽  
Vol 66 (2) ◽  
pp. 151-161 ◽  
Author(s):  
Sławomir Głuszek ◽  
Lidia Sas-Paszt ◽  
Beata Sumorok ◽  
Ryszard Kozera

Biochar is a solid material of biological origin obtained from biomass carbonization, designed as a mean to reduce greenhouse gases emission and carbon sequestration in soils for a long time. Biochar has a wide spectrum of practical utilization and is applied as a promising soil improver or fertilizer in agriculture, or as a medium for soil or water remediation. Preparations of biochar increase plant growth and yielding when applied into soil and also improve plant growth conditions, mainly bio, physical and chemical properties of soil. Its physical and chemical properties have an influence on bacteria, fungi and invertebrates, both in field and laboratory conditions. Such effects on rhizosphere organisms are positive or negative depending on biochar raw material origin, charring conditions, frequency of applications, applications method and doses, but long term effects are generally positive and are associated mainly with increased soil biota activity. However, a risk assessment of biochar applications is necessary to protect food production and the soil environment. This should be accomplished by biochar production and characterization, land use implementation, economic analysis, including life cycle assessment, and environmental impact assessment.


2021 ◽  
Author(s):  
You-Xin Shen ◽  
Qing-he Wang ◽  
Zhi-Meng Zhao ◽  
Qiong-Fen Li ◽  
Sheng-Chun Bi

Abstract Purpose Rock outcrops (ROCs) are common structures in terrestrial ecosystems, especially in karst regions. However, their effects on adjacent soil patches and plants are rarely studied. In this study, the effects of ROCs on surrounding soils and plants were investigated. Methods Thirty isolated ROCs were randomly selected in a typical semi-humid karst grassland in Southwest China. Rainfall and ROC runoff were collected for chemical analyses. Soil physical and chemical properties and herb above- and belowground biomass were determined at 0 to 30, 31 to 60, 61 to 90, 91 to 190, and 191 to 290 cm from the ROC rock–soil interface. Results The pH and total organic carbon and Ca2+ contents were higher in ROC runoff than in rainfall. Some soil physical and chemical properties were significantly higher in samples at 0 to 30 cm, and above- and belowground plant biomass were both significantly higher from 0 to 30 cm and from 31 to 60 cm than at greater distances. The ROC effect zone, as estimated by logistic equation, was approximately 75 cm. When the area covered by an ROC was between 0.7 and 1.3 m2, herb biomass increased sharply from 0 to 30 cm and from 31 to 60 cm. Conclusions Karst ROCs affected soils and plants close to their bases, and the effects increased sharply when the area covered by an ROC was of intermediate size.


2015 ◽  
Vol 2 (2) ◽  
pp. 1075-1101
Author(s):  
A. Adugna ◽  
A. Abegaz

Abstract. Land use change can have negative or positive effects on soil quality. Our objective was to assess the effects of land uses changes on the dynamics of selected soil physical and chemical properties. Soil samples were collected from three adjacent land uses, namely forestland, grazing land and cultivated land at 0–15 cm depth, and tested in National Soil Testing Center, Ministry of Agriculture of Ethiopia. Percentage changes of soil properties on cultivated and grazing land was computed and compared to forestland, and Analysis of variance (ANOVA) was used to test the significance of the changes. The results indicate that sand, silt, SOM, N, pH, CEC and Ca were the highest in forestlands. Mg was the highest in grazing land while clay, P and K were the highest in cultivated land. The percentage changes in sand, clay, SOM, pH, CEC, Ca and Mg were higher in cultivated land than the change in grazing land compared to forestland, except P. In terms of relationship between soil properties; SOM, N, CEC and Ca were strongly positively correlated with most of soil properties while P and silt have no significant relationship with any of other considered soil properties. Clay has negative correlation with all of soil properties. Generally, cultivated land has the least concentration of soil physical and chemical properties except clay and AP which suggest increasing degradation rate in soils of cultivated land. So as to increase SOM and other nutrients in the soil of cultivated land, integrated implementation of land management through compost, cover crops, manures, minimum tillage and crop rotation; and liming to increase soil pH are suggested.


Sign in / Sign up

Export Citation Format

Share Document