scholarly journals Optimal Design of a Standalone Photovoltaic Power Supply System for Air Conditioning Application at Samara University as an Alternative to Diesel Generator Source

2013 ◽  
Vol 1 (2) ◽  
pp. 65 ◽  
Author(s):  
B Bogale ◽  
A Alemayehu
Author(s):  
Kazuto Yukita ◽  
Tadashi Hosoe ◽  
Shunsuke Horie ◽  
Toshiro Matsumura ◽  
Masayoshi Hamanaka ◽  
...  

Author(s):  
V. Stepanenko ◽  
Y. Veremiichuk

The implementation of an integrated energy supply system is an effective way to increase energy efficiency, reduce CO2 emissions and increase the use of renewable energy, as well as provide opportunities for energy production, conversion and storage in interconnected infrastructures for energy system operators and consumers. Also, increasing the level of energy efficiency of the energy supply system is one of the important strategies to slow down the growth of demand and mitigate the negative impact on health, the economy and the environment. The article considers the integrated use of energy, the introduction of energy hubs as part of future energy networks and proposes a schematic diagram of an integrated energy supply system. The article presents the results of modeling and computational experiment of ventilation and air conditioning systems in the integrated power supply system, taking into account the technical and operational characteristics of SES, regulatory and technical documents and building codes. According to the results of the study, it is established that the schedule of SES generation and the schedule of electricity consumption by ventilation and air conditioning systems are similar, which leads to a reduction in operating costs and a reduction in the load on the building's power supply system. The scientific substantiation of the integration of the energy storage system into the energy supply structure has been further developed, which will ensure the reliability of the power supply and the efficiency of the solar power plant.


2015 ◽  
Vol 160 ◽  
pp. 728-736 ◽  
Author(s):  
Tao Ma ◽  
Hongxing Yang ◽  
Lin Lu ◽  
Jinqing Peng

Author(s):  
Odudu O. C.

Abstract: The aim of this research is to use a combination of renewable energy sources and conventional diesel generator to model a cost effective, alternative energy source for telecommunication base stations in Nigeria. Actually, this study uses various theoretical and mathematical modelling tools, such as, Mat lab Simulink and HOMER software. In the same way, the study references several Base Transceiver Stations (BTS) from gsm providers at select geographical locations in Rivers State. The study references BTS infrastructure in locations such as Ogoni, Port Harcourt and Emohua. These locations were selected to reflect different climatic conditions in Rivers state. Against this background, various hybrid combinations comprising at least two sources of renewable energy e.g Wind Turbine generator(WTG) and Solar Photovoltaic (SPV) were modelled. Also, Fuzzy logic optimization algorithm was used in tracking the maximum power in the SPV. A sample Diesel Generator(DG) was studied to analyze which possible combination gives optimum performance and is most cost effective. The total cost for installation and maintenance of the hybrid system was also considered. Consequently, one of the common negative effects of conventional power generation and usage, which is environmental pollution, was also highlighted during the study. In the course of this research, Homer was used to model a hybrid system in which the initial capital Cost (ICC) was N101,517,040 for 96 nos battery, 1 no 10kw WTG, 1 no hydro-turbine, 48 nos converters, labour etc. The replacement cost for component has a depreciation of 30%; while maintenance for diesel is 30% of the ICC. Eventually, the results obtained from the simulations showed that with an increase in supply from renewable energy sources the overall cost spent when compared to using a diesel generator only is cut by 50%, while the pollution effects also dropped. In fact, the cost also reduces if the renewable energy system is designed efficiently to track and harness maximum power. Furthermore, it is also evident that the location of the base station site and the availability of Renewable energy source affects the efficiency and cost of the entire system. Hence, it is recommended that any telecommunication company which intends installing a hybrid power system for its base stations must carry out detailed feasibility studies using input parameters described here; especially, as it relates to siting of base stations in rural off-grid areas. Keywords: Hybrid Power Supply System


Sign in / Sign up

Export Citation Format

Share Document