scholarly journals Biomechanical evaluation of oversized drilling technique on primary implant stability measured by insertion torque and resonance frequency analysis

Author(s):  
G Santamaria-Arrieta ◽  
A Brizuela-Velasco ◽  
FJ Fernandez-Gonzalez ◽  
D Chavarri-Prado ◽  
Y Chento-Valiente ◽  
...  
2020 ◽  
Vol 9 (9) ◽  
pp. 2977
Author(s):  
Tanja Grobecker-Karl ◽  
Anthony Dickinson ◽  
Siegfried Heckmann ◽  
Matthias Karl ◽  
Constanze Steiner

Insertion energy has been advocated as a novel measure for primary implant stability, but the effect of implant length, diameter, or surgical protocol remains unclear. Twenty implants from one specific bone level implant system were placed in layered polyurethane foam measuring maximum insertion torque, torque–time curves, and primary stability using resonance frequency analysis (RFA). Insertion energy was calculated as area under torque–time curve applying the trapezoidal formula. Statistical analysis was based on analysis of variance, Tukey honest differences tests and Pearson’s product moment correlation tests (α = 0.05). Implant stability (p = 0.01) and insertion energy (p < 0.01) differed significantly among groups, while maximum insertion torque did not (p = 0.17). Short implants showed a significant decrease in implant stability (p = 0.01), while reducing implant diameter did not cause any significant effect. Applying the drilling protocol for dense bone resulted in significantly increased insertion energy (p = 0.02) but a significant decrease in implant stability (p = 0.04). Insertion energy was not found to be a more reliable parameter for evaluating primary implant stability when compared to maximum insertion torque and resonance frequency analysis.


Author(s):  
Ingrid Kästel ◽  
Giles de Quincey ◽  
Jörg Neugebauer ◽  
Robert Sader ◽  
Peter Gehrke

Abstract Background There is disagreement about the optimal torque for tightening smartpegs for resonance frequency analysis (RFA). Subjective finger pressure during hand tightening could affect the reliability of the resulting values. The aim of the current study was therefore to assess whether or not the insertion torque of a smartpeg magnetic device influences the implant stability quotient (ISQ) value during RFA. Methods Thirty self-tapping screw implants (XiVE S, Dentsply Sirona Implants, Bensheim, Germany) with a diameter of 3.8 mm and a length of 11 mm were inserted in three cow ribs with a bone quality of D1. The RFA value of each implant was measured (Ostell, FA W&H Dentalwerk, Bürmoos, Austria) in two orthogonal directions (mesial and buccal) after tightening the corresponding smartpeg type 45 with a mechanically defined value of 5 Ncm (Meg Torq device, Megagen, Daegu, South Korea) (test). Additionally, 4 different examiners measured the RFA after hand tightening the smartpegs, and the results were compared (control). Insertion torque values were determined by measuring the unscrew torque of hand seated smartpegs (Tohnichi Manufacturing Co. Ltd, Tokyo, Japan). Results The ISQ values varied from 2 to 11 Ncm by hand tightening and from 2 to 6 Ncm by machine tightening. The comparison of hand and machine tightening of smartpegs displayed only minor differences in the mean ISQ values with low standard deviations (mesial 79.76 ± 2,11, buccal 77.98 ± 2,) and no statistical difference (mesial p = 0,343 and buccal p = 0,890). Conclusions Manual tightening of smartpeg transducers allows for an objective and reliable determination of ISQ values during RFA.


2018 ◽  
Vol 44 (2) ◽  
pp. 109-113 ◽  
Author(s):  
Karine Câmara Silva ◽  
Elton Gonçalves Zenóbio ◽  
Paulo Eduardo Alencar Souza ◽  
Rodrigo Villamarim Soares ◽  
Maurício Greco Cosso ◽  
...  

This study aimed to compare the primary and secondary stability, measured by resonance frequency analysis (RFA), in implants of different lengths installed in areas submitted to maxillary sinus lift. Correlation between RFA and implant insertion torque was also assessed. Twenty implants of 9 and 11 mm were inserted in areas submitted to maxillary sinus lift. The insertion torque was measured by the Bien Air motor. Osstell, through RFA, determined the implant stability quotient (ISQ) 2 times: the day of implant installation (T1) and 90 days after implant installation (T2). No differences were observed in the ISQ between T1 and T2 when the 20 implants were grouped, nor when the 9 mm implants were evaluated separately. In contrast, when the 11 mm values were evaluated separately, the ISQ was significantly higher in T2 than in T1 (P &lt; .05). In T1, 9 mm implants had a higher ISQ than 11 mm ones (P &lt; .05), whereas in T2, the implants of 11 mm showed a higher ISQ than did the 9 mm implants (P &lt; .05). There was no difference in insertion torque between 9 and 11 mm implants (P &gt; .05), nor was there a correlation between ISQ and insertion torque (P &gt; .05). In conclusion, longer implants (11 mm) presented a significant increase in ISQ values during the healing period when installed in areas previously submitted to maxillary sinus lift. This phenomenon was not observed for shorter implants (9 mm). Finally, no correlation was observed between ISQ and insertion torque.


2020 ◽  
Vol 46 (3) ◽  
pp. 182-189 ◽  
Author(s):  
Davide Farronato ◽  
Mattia Manfredini ◽  
Michele Stocchero ◽  
Mattia Caccia ◽  
Lorenzo Azzi ◽  
...  

The aim of this study was to evaluate the influence of bone quality, drilling technique, implant diameter, and implant length on insertion torque (IT) and resonance frequency analysis (RFA) of a prototype-tapered implant with knife-edge threads. The investigators hypothesized that IT would be affected by variations in bone quality and drilling protocol, whereas RFA would be less influenced by such variables. The investigators implemented an in vitro experiment in which a prototype implant was inserted with different testing conditions into rigid polyurethane foam blocks. The independent variables were: bone quality, drilling protocol, implant diameter, and implant length. Group A implants were inserted with a conventional drilling protocol, whereas Group B implants were inserted with an undersized drilling protocol. Values of IT and RFA were measured at implant installation. IT and RFA values were significantly correlated (Pearson correlation coefficient: 0.54). A multivariable analysis showed a strong model. Higher IT values were associated with drilling protocol B vs A (mean difference: 71.7 Ncm), implant length (3.6 Ncm increase per mm in length), and substrate density (0.199 Ncm increase per mg/cm3 in density). Higher RFA values were associated with drilling protocol B vs A (mean difference: 3.9), implant length (1.0 increase per mm in length), and substrate density (0.032 increase per mg/cm3 in density). Implant diameter was not associated with RFA or IT. Within the limitations of an in vitro study, the results of this study suggest that the studied implant can achieve good level of primary stability in terms of IT and RFA. A strong correlation was found between values of IT and RFA. Both parameters are influenced by the drilling protocol, implant length, and substrate density. Further studies are required to investigate the clinical response in primary stability and marginal bone response.


Sign in / Sign up

Export Citation Format

Share Document