The spatio-temporal logics of Collidescope’s welcome table

2019 ◽  
pp. 220-227
Author(s):  
Brandi Wilkins Catanese
2021 ◽  
Vol 26 ◽  
pp. 158-180
Author(s):  
Irina Alexandra Feldman

This article analyzes spatio-temporal logics in the representation of the city of La Paz in Imágenes Paceñas by Jaime Saenz and the urban chronicles of Víctor Hugo Viscarra. Juxtaposing the concepts of chrononormativity and queer time, it explores how linear temporal logic remains insufficient for the understanding of the city and its inhabitants in the two narrative projects. The article postulates that the marginal spaces of architectural ruins and garbage dumps, and the marginalized people who inhabit queer space-time are key to “revealing the hidden city” and understanding its contradictory place in the national narrative and space.


Author(s):  
Xu Lu ◽  
Cong Tian ◽  
Zhenhua Duan

Temporal logics are widely adopted in Artificial Intelligence (AI) planning for specifying Search Control Knowledge (SCK). However, traditional temporal logics are limited in expressive power since they are unable to express spatial constraints which are as important as temporal ones in many planning domains. To this end, we propose a two-dimensional (spatial and temporal) logic namely PPTL^SL by temporalising separation logic with Propositional Projection Temporal Logic (PPTL). The new logic is well-suited for specifying SCK containing both spatial and temporal constraints which are useful in AI planning. We show that PPTL^SL is decidable and present a decision procedure. With this basis, a planner namely S-TSolver for computing plans based on the spatio-temporal SCK expressed in PPTL^SL formulas is developed. Evaluation on some selected benchmark domains shows the effectiveness of S-TSolver.


2005 ◽  
Vol 23 ◽  
pp. 167-243 ◽  
Author(s):  
D. Gabelaia ◽  
R. Kontchakov ◽  
A. Kurucz ◽  
F. Wolter ◽  
M. Zakharyaschev

In this paper, we construct and investigate a hierarchy of spatio-temporal formalisms that result from various combinations of propositional spatial and temporal logics such as the propositional temporal logic PTL, the spatial logics RCC-8, BRCC-8, S4u and their fragments. The obtained results give a clear picture of the trade-off between expressiveness and `computational realisability' within the hierarchy. We demonstrate how different combining principles as well as spatial and temporal primitives can produce NP-, PSPACE-, EXPSPACE-, 2EXPSPACE-complete, and even undecidable spatio-temporal logics out of components that are at most NP- or PSPACE-complete.


2010 ◽  
Vol 174 (1) ◽  
pp. 72-104 ◽  
Author(s):  
John Grant ◽  
Francesco Parisi ◽  
Austin Parker ◽  
V.S. Subrahmanian

2019 ◽  
Vol 38 (2) ◽  
pp. 325-344
Author(s):  
Andreas Chatzidakis

This paper explores the spatio-temporal dimensions of consumer activism during the Greek crisis. Existing work has provided valuable insights into the figure of the political consumer and the socio-spatial contexts in which consumer activism is enacted. The paper presents original six-year ethnographic work that extends current knowledge through exploring how the spatial and temporal dimensions of consumer activism are unsettled and reconfigured during an acute economic crisis. It builds on the concept of chronotopic dilemmas to illustrate the ideological tensions and contradictions between old and new spatio-temporal logics and practices. In doing so, the current study complements prior research focused on how distinct cultural and institutional settings mediate discourses and actions of consumer activism, by highlighting their inherently spatio-temporal (chronotopic) nature.


2005 ◽  
Vol 41 ◽  
pp. 15-30 ◽  
Author(s):  
Helen C. Ardley ◽  
Philip A. Robinson

The selectivity of the ubiquitin–26 S proteasome system (UPS) for a particular substrate protein relies on the interaction between a ubiquitin-conjugating enzyme (E2, of which a cell contains relatively few) and a ubiquitin–protein ligase (E3, of which there are possibly hundreds). Post-translational modifications of the protein substrate, such as phosphorylation or hydroxylation, are often required prior to its selection. In this way, the precise spatio-temporal targeting and degradation of a given substrate can be achieved. The E3s are a large, diverse group of proteins, characterized by one of several defining motifs. These include a HECT (homologous to E6-associated protein C-terminus), RING (really interesting new gene) or U-box (a modified RING motif without the full complement of Zn2+-binding ligands) domain. Whereas HECT E3s have a direct role in catalysis during ubiquitination, RING and U-box E3s facilitate protein ubiquitination. These latter two E3 types act as adaptor-like molecules. They bring an E2 and a substrate into sufficiently close proximity to promote the substrate's ubiquitination. Although many RING-type E3s, such as MDM2 (murine double minute clone 2 oncoprotein) and c-Cbl, can apparently act alone, others are found as components of much larger multi-protein complexes, such as the anaphase-promoting complex. Taken together, these multifaceted properties and interactions enable E3s to provide a powerful, and specific, mechanism for protein clearance within all cells of eukaryotic organisms. The importance of E3s is highlighted by the number of normal cellular processes they regulate, and the number of diseases associated with their loss of function or inappropriate targeting.


2019 ◽  
Vol 47 (6) ◽  
pp. 1733-1747 ◽  
Author(s):  
Christina Klausen ◽  
Fabian Kaiser ◽  
Birthe Stüven ◽  
Jan N. Hansen ◽  
Dagmar Wachten

The second messenger 3′,5′-cyclic nucleoside adenosine monophosphate (cAMP) plays a key role in signal transduction across prokaryotes and eukaryotes. Cyclic AMP signaling is compartmentalized into microdomains to fulfil specific functions. To define the function of cAMP within these microdomains, signaling needs to be analyzed with spatio-temporal precision. To this end, optogenetic approaches and genetically encoded fluorescent biosensors are particularly well suited. Synthesis and hydrolysis of cAMP can be directly manipulated by photoactivated adenylyl cyclases (PACs) and light-regulated phosphodiesterases (PDEs), respectively. In addition, many biosensors have been designed to spatially and temporarily resolve cAMP dynamics in the cell. This review provides an overview about optogenetic tools and biosensors to shed light on the subcellular organization of cAMP signaling.


Sign in / Sign up

Export Citation Format

Share Document