Pneumatic and hydraulic circuits and arrangement of components

Author(s):  
Ian C. Turner
Keyword(s):  
2011 ◽  
Vol 133 (1) ◽  
Author(s):  
F. Aloui ◽  
E. Berrich ◽  
D. Pierrat

In some industrial processes, and especially in agrofood industries, the cleaning in place mechanism used for hydraulic circuits plays an important role. This process needs a good knowledge of the hydrodynamic flows to determinate the appropriate parameters that assure a good cleaning of these circuits without disassembling them. Generally, different arrangements are present in these hydraulic circuits, such as expansions, diffusers, and elbows. The flow crossing these singularities strongly affects the process of cleaning in place. This work is then a contribution to complete recent studies of “aliments quality security” project to ameliorate the quality of the cleaning in place. It presents experimental and numerical investigations of a confined turbulent flow behavior across a conical diffuser (2α=16 deg). The role of a perturbation caused by the presence of an elbow in the test section, upstream of the progressive enlargement, was studied. The main measurements were the static pressure and the instantaneous velocity fields using the particle image velocimetry (PIV). Post-processing of these PIV measurements were adopted using the Γ2 criterion for the vortices detection and the proper orthogonal decomposition (POD) technique to extract the most energetic modes contained in the turbulent flow and to the turbulent flow filtering. A database has been also constituted and was used to test the validity of the most models of turbulence, and in particular, a variant of the shear stress transport (SST) model.


Author(s):  
Jeslin J. Wu ◽  
James D. Van de Ven

Hydraulic circuits are typically controlled by throttling valves or variable displacement pump/motors. The first method throttles fluid for a desired pressure output and excess energy is lost through heat. While variable displacement pumps are more efficient, they are often large and expensive. An alternate method is the switch-mode control of hydraulic circuits through high-speed on-off valves. The proposed on-off valve design makes use of a continuously rotating disc to modulate flow between on and off states; the average power output or pulse duration is determined by the relative phase shift between the input and output ports. The addition of a directional valve to the the high-speed three-way valve allows any fixed displacement actuator to behave like a virtually variable displacement unit that is capable of four-quadrant control. In this paper a mathematical model focusing on the throttling, compressibility, internal leakage and viscous friction losses is developed and utilized to optimize the valve design for highest efficiency.


2018 ◽  
Vol 39 ◽  
pp. 04002 ◽  
Author(s):  
Egor A. Mikhailovsky

The paper is focused on a characteristic of an innovative technology for remote application of methods of the theory of hydraulic circuits for modeling the operation of multi-loop water and gas pipeline systems, using the Internet browser. The aims, objectives and implementation principles of the technology resting on the concept of object-oriented modeling of pipeline systems and clientserver architecture of the distributed software are presented. The results of its application are demonstrated.


Sign in / Sign up

Export Citation Format

Share Document