Meteorological and Hydrological Hazards

2021 ◽  
pp. 35-66
Author(s):  
Dylan Sandler ◽  
Anna K. Schwab
Keyword(s):  
Geosciences ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 493 ◽  
Author(s):  
Vincenzo Marsala ◽  
Alberto Galli ◽  
Giorgio Paglia ◽  
Enrico Miccadei

This work is focused on the landslide susceptibility assessment, applied to Mauritius Island. The study area is a volcanic island located in the western part of the Indian Ocean and it is characterized by a plateau-like morphology interrupted by three rugged mountain areas. The island is severely affected by geo-hydrological hazards, generally triggered by tropical storms and cyclones. The landslide susceptibility analysis was performed through an integrated approach based on morphometric analysis and preliminary Geographical Information System (GIS)-based techniques, supported by photogeological analysis and geomorphological field mapping. The analysis was completed following a mixed heuristic and statistical approach, integrated using GIS technology. This approach led to the identification of eight landslide controlling factors. Hence, each factor was evaluated by assigning appropriate expert-based weights and analyzed for the construction of thematic maps. Finally, all the collected data were mapped through a cartographic overlay process in order to realize a new zonation of landslide susceptibility. The resulting map was grouped into four landslide susceptibility classes: low, medium, high, and very high. This work provides a scientific basis that could be effectively applied in other tropical areas showing similar climatic and geomorphological features, in order to develop sustainable territorial planning, emergency management, and loss-reduction measures.


2021 ◽  
Author(s):  
Laura Müller ◽  
Petra Döll

<p>Due to climate change, the water cycle is changing which requires to adapt water management in many regions. The transdisciplinary project KlimaRhön aims at assessing water-related risks and developing adaptation measures in water management in the UNESCO Biosphere Reserve Rhön in Central Germany. One of the challenges is to inform local stakeholders about hydrological hazards in in the biosphere reserve, which has an area of only 2433 km² and for which no regional hydrological simulations are available. To overcome the lack of local simulations of the impact of climate change on water resources, existing simulations by a number of global hydrological models (GHMs) were evaluated for the study area. While the coarse model resolution of 0.5°x0.5° (55 km x 55 km at the equator) is certainly problematic for the small study area, the advantage is that both the uncertainty of climate simulations and hydrological models can be taken into account to provide a best estimate of future hazards and their (large) uncertainties. This is different from most local hydrological climate change impact assessments, where only one hydrological model is used, which leads to an underestimation of future uncertainty as different hydrological models translate climatic changes differently into hydrological changes and, for example, mostly do not take into account the effect of changing atmospheric CO<sub>2</sub> on evapotranspiration and thus runoff.   </p><p>The global climate change impact simulations were performed in a consistent manner by various international modeling groups following a protocol developed by ISIMIP (ISIMIP 2b, www.isimip.org); the simulation results are freely available for download. We processed, analyzed and visualized the results of the multi-model ensemble, which consists of eight GHMs driven by the bias-adjusted output of four general circulation models. The ensemble of potential changes of total runoff and groundwater recharge were calculated for two 30-year future periods relative to a reference period, analyzing annual and seasonal means as well as interannual variability. Moreover, the two representative concentration pathways RCP 2.6 and 8.5 were chosen to inform stakeholders about two possible courses of anthropogenic emissions.</p><p>To communicate the results to local stakeholders effectively, the way to present modeling results and their uncertainty is crucial. The visualization and textual/oral presentation should not be overwhelming but comprehensive, comprehensible and engaging. It should help the stakeholder to understand the likelihood of particular hazards that can be derived from multi-model ensemble projections. In this contribution, we present the communication approach we applied during a stakeholder workshop as well as its evaluation by the stakeholders.</p>


2021 ◽  
Vol 118 (13) ◽  
pp. e2016839118
Author(s):  
James Knighton ◽  
Kelly Hondula ◽  
Cielo Sharkus ◽  
Christian Guzman ◽  
Rebecca Elliott

Flooding risk results from complex interactions between hydrological hazards (e.g., riverine inundation during periods of heavy rainfall), exposure, vulnerability (e.g., the potential for structural damage or loss of life), and resilience (how well we recover, learn from, and adapt to past floods). Building on recent coupled conceptualizations of these complex interactions, we characterize human–flood interactions (collective memory and risk-enduring attitude) at a more comprehensive scale than has been attempted to date across 50 US metropolitan statistical areas with a sociohydrologic (SH) model calibrated with accessible local data (historical records of annual peak streamflow, flood insurance loss claims, active insurance policy records, and population density). A cluster analysis on calibrated SH model parameter sets for metropolitan areas identified two dominant behaviors: 1) “risk-enduring” cities with lower flooding defenses and longer memory of past flood loss events and 2) “risk-averse” cities with higher flooding defenses and reduced memory of past flooding. These divergent behaviors correlated with differences in local stream flashiness indices (i.e., the frequency and rapidity of daily changes in streamflow), maximum dam heights, and the proportion of White to non-White residents in US metropolitan areas. Risk-averse cities tended to exist within regions characterized by flashier streamflow conditions, larger dams, and larger proportions of White residents. Our research supports the development of SH models in urban metropolitan areas and the design of risk management strategies that consider both demographically heterogeneous populations, changing flood defenses, and temporal changes in community risk perceptions and tolerance.


Author(s):  
Lynée L Turek-Hankins ◽  
Erin Coughlan de Perez ◽  
Giulia Scarpa ◽  
Raquel Ruiz-Diaz ◽  
Patricia Nayna Shwerdtle ◽  
...  

Abstract Extreme heat events impact people and ecosystems across the globe, and they are becoming more frequent and intense in a warming climate. Responses to heat span sectors and geographic boundaries. Prior research has documented technologies or options that can be deployed to manage extreme heat and examples of how individuals, communities, governments, and other stakeholder groups are adapting to heat. However, a comprehensive understanding of the current state of implemented heat adaptations—where, why, how, and to what extent they are occurring—has not been established. Here, we combine data from the Global Adaptation Mapping Initiative with a heat-specific systematic review to analyze the global extent and diversity of documented heat adaptation actions (n = 301 peer-reviewed articles). Data from 98 countries suggest that documented heat adaptations fundamentally differ by geographic region and national income. In high-income, developed countries, heat is overwhelmingly treated as a health issue, particularly in urban areas. However, in low and middle income, developing countries, heat adaptations focus on agricultural and livelihood-based impacts, primarily considering heat as a compound hazard with drought and other hydrological hazards. 63% of the heat-adaptation articles feature individuals or communities autonomously adapting, highlighting how responses to date have largely consisted of coping strategies. The current global status of responses to intensifying extreme heat, largely autonomous and incremental yet widespread, establishes a foundation for informed decision making as heat impacts around the world continue to increase.


2014 ◽  
pp. 53-70 ◽  
Author(s):  
Yang Hong ◽  
Lu Liu ◽  
Lei Qiao ◽  
Pradeep Adhikari

2021 ◽  
Author(s):  
Maria Mavrouli ◽  
Spyridon Mavroulis ◽  
Efthymios Lekkas

<p>The first confirmed COVID-19 case was reported in December 2019. Over the first months of 2020, the novel SARS-CoV-2 virus was spread worldwide resulting in the declaration on March 11, 2020 of a global COVID-19 pandemic by the World Health Organization. The evolving pandemic has resulted in over 1900000 fatalities worldwide (as of January 8, 2021), while all sectors of the everyday life has been affected in numerous and varied ways. Natural hazards did not stop for the novel coronavirus. When the natural hazards cross the path of an evolving pandemic, compound emergencies emerge and are characterized by various effects and new unprecedented challenges.</p><p>Greece was no exception. Geological, hydrological and meteorological hazards took place in several parts of the country and they affected the local population, the natural and the built environment including buildings, infrastructures and lifelines. Among the most destructive effects in terms of human and economic losses was the March 21, 2020, Mw=5.7, Epirus (northwestern Greece) earthquake, the August 9, 2020, Evia (central Greece) flood, the September 17, 2020, Ianos medicane and the October 30, 2020, Mw=7.0, Samos (Eastern Aegean Sea) earthquake.</p><p>In order to identify the potential impact of the aforementioned disasters on the evolution of the COVID-19 pandemic in the disaster-affected areas, the officially reported laboratory-confirmed daily COVID-19 cases for the pre- and post- disaster periods from the disaster-affected areas were used. The impact of disasters in the evolution of the pandemic in the studied disaster-affected areas comprises increasing and decreasing trends and stability of the COVID-19 cases during the post-disaster period. More specifically, the geological and the hydrological hazards and the induced disasters negligibly affected the evolution of pandemic in the affected areas, while the hydrometeorological hazards resulted in increasing trends of the post-disaster reported COVID-19 cases in various affected areas.</p><p>The detected trends are strongly associated with the pre-existing viral load and infection rate in the disaster-affected areas, to the emergency response actions adapted to adopt provisional measures for the mitigation and elimination of COVID-19 consequences, to demographic features of the affected areas and to the intensity of the induced disasters and their effects on the local population (fatalities and injuries), the natural environment (primary and secondary environmental effects) and the built environment (structural damage to buildings, infrastructures and lifelines).</p>


2019 ◽  
Vol 44 (4) ◽  
pp. 276-282 ◽  
Author(s):  
V. Yu. Georgievskii ◽  
E. A. Grek ◽  
M. L. Markov ◽  
T. G. Molchanova

2016 ◽  
Vol 2016 ◽  
pp. 1-2 ◽  
Author(s):  
Slavisa Trajkovic ◽  
Ozgur Kisi ◽  
Momcilo Markus ◽  
Hossein Tabari ◽  
Milan Gocic ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document