scholarly journals Shonan Institute of Technology, Department of Materials Science and Engineering, Morii Laboratory

Seikei-Kakou ◽  
2008 ◽  
Vol 21 (1) ◽  
pp. 32-34
Author(s):  
Tohru Morii
Impact ◽  
2020 ◽  
Vol 2020 (9) ◽  
pp. 80-82
Author(s):  
Shuichi Akasaka

Engineers and materials scientists are constantly working to improve the quality of our built environments and vehicles, including noise levels and vibration. The researchers pursuing the duel goals of safety and comfort are increasingly being challenged as the projects they work on advance technologically, in size and are constructed with new materials. Buildings grow taller and must compensate for greater movement and vibrations from wind or shifting foundations. Cars especially are undergoing drastic changes that require a rethinking of the material and designs of their frames, panels, doors and windows. The advent of electric motors for example, has reduced overall noise but shifted the frequency of sound higher, making them more uncomfortable. Assistant Professor Shuichi Akasaka, who is based in the Department of Materials Science and Engineering at Tokyo Institute of Technology in Japan, is carrying out research to design new materials that reduce vibration and noise, and create the quiet, safe automobiles and living spaces of the future.


MRS Advances ◽  
2017 ◽  
Vol 2 (31-32) ◽  
pp. 1687-1692 ◽  
Author(s):  
Yakov E. Cherner ◽  
Maija M. Kuklja ◽  
Michael J. Cima ◽  
Alexander I. Rusakov ◽  
Alexander S. Sigov ◽  
...  

ABSTRACTA virtual X-Ray Laboratory for Materials Science and Engineering has been developed and used as a flexible and powerful tool to help undergraduate and graduate students become familiar with the design and operation of the X-ray equipment in visual and interactive ways in order to learn fundamental principles underlying X-ray analytical methods. The virtual equipment and lab assignments have been used for: (i) authentic online experimentation, (ii) homework and control assignments with traditional and blended courses, (iii) preparing students for hands-on work in physical X-ray labs, (iv) lecture demonstrations, and (v) performance-based assessment of students’ ability to apply gained theoretical knowledge for operating actual equipment and solving practical problems. Students have also used the virtual diffractometer linked and synchronized with an actual powder diffractometer for blended experimentation. Using the associated learning and content management system (LCMS) and authoring tools, instructors kept track of students’ performance and designed new virtual experiments and more personalized learning assignments for students. The lab has also been integrated with the MITx course available on the massive open online course edX platform for Massachusetts Institute of Technology for undergraduate students.


2004 ◽  
Vol 827 ◽  
Author(s):  
Laura M. Bartolo ◽  
Sharon C. Glotzer ◽  
Javed I. Khan ◽  
Adam C. Powell ◽  
Donald R. Sadoway ◽  
...  

AbstractThe National Science Foundation's National Science Digital Library (NSDL) Program is a premier collective portal of authoritative scientific resources supporting education and research. With funding from NSF, the Materials Digital Library (MatDL) is a collaborative project being developed by the National Institute of Standards and Technology's Materials Science and Engineering Laboratory (NIST/MSEL), the Department of Materials Science and Engineering at the Massachusetts Institute of Technology (MIT), the Department of Chemical Engineering and the Department of Materials Science and Engineering at the University of Michigan (U-M), with Kent State University and University of Colorado at Boulder providing the materials science informatics and workflow technology backbone. As part of the NSDL program, MatDL aims to supports the interface of materials science information and its cognate disciplines, with an emphasis on soft matter. Initial content of MatDL begins with resources selected from NIST/MSEL. Students and faculty in three types of materials science and engineering (MSE) courses at MIT and U-M are taking part in a pilot to use and contribute to MatDL utilizing domain-specific authoring tools. Given the central and interdisciplinary role of materials science in science and engineering, two goals of MatDL are to: 1.) expand its founding partnership with additional participants from the MSE community; and 2.) facilitate the flow of digital materials related knowledge from laboratories where the most recent research discoveries are taking place to the classrooms where new scientists are being trained.


2000 ◽  
Vol 632 ◽  
Author(s):  
Eric Werwa

ABSTRACTA review of the educational literature on naive concepts about principles of chemistry and physics and surveys of science museum visitors reveal that people of all ages have robust alternative notions about the nature of atoms, matter, and bonding that persist despite formal science education experiences. Some confusion arises from the profound differences in the way that scientists and the lay public use terms such as materials, metals, liquids, models, function, matter, and bonding. Many models that eloquently articulate arrangements of atoms and molecules to informed scientists are not widely understood by lay people and may promote naive notions among the public. Shifts from one type of atomic model to another and changes in size scales are particularly confusing to learners. People's abilities to describe and understand the properties of materials are largely based on tangible experiences, and much of what students learn in school does not help them interpret their encounters with materials and phenomena in everyday life. Identification of these challenges will help educators better convey the principles of materials science and engineering to students, and will be particularly beneficial in the design of the Materials MicroWorld traveling museum exhibit.


2021 ◽  
Vol 22 (9) ◽  
pp. 4543
Author(s):  
Xuan-Hung Pham ◽  
Seung-min Park ◽  
Bong-Hyun Jun

Nano/micro particles are considered to be the most valuable and important functional materials in the field of materials science and engineering [...]


Sign in / Sign up

Export Citation Format

Share Document