The Use of Web-based Virtual X-Ray Diffraction Laboratory for Teaching Materials Science and Engineering

MRS Advances ◽  
2017 ◽  
Vol 2 (31-32) ◽  
pp. 1687-1692 ◽  
Author(s):  
Yakov E. Cherner ◽  
Maija M. Kuklja ◽  
Michael J. Cima ◽  
Alexander I. Rusakov ◽  
Alexander S. Sigov ◽  
...  

ABSTRACTA virtual X-Ray Laboratory for Materials Science and Engineering has been developed and used as a flexible and powerful tool to help undergraduate and graduate students become familiar with the design and operation of the X-ray equipment in visual and interactive ways in order to learn fundamental principles underlying X-ray analytical methods. The virtual equipment and lab assignments have been used for: (i) authentic online experimentation, (ii) homework and control assignments with traditional and blended courses, (iii) preparing students for hands-on work in physical X-ray labs, (iv) lecture demonstrations, and (v) performance-based assessment of students’ ability to apply gained theoretical knowledge for operating actual equipment and solving practical problems. Students have also used the virtual diffractometer linked and synchronized with an actual powder diffractometer for blended experimentation. Using the associated learning and content management system (LCMS) and authoring tools, instructors kept track of students’ performance and designed new virtual experiments and more personalized learning assignments for students. The lab has also been integrated with the MITx course available on the massive open online course edX platform for Massachusetts Institute of Technology for undergraduate students.

10.29007/7wf8 ◽  
2020 ◽  
Author(s):  
Yakov Cherner ◽  
Michael Cima ◽  
Paul Barone ◽  
Bruce Van Dyke ◽  
Arnold Lotring

This paper presents and discusses the use of simulation-based customizable online learning activities, virtual laboratories, and comprehensive e-Learning environments for teaching subjects such as materials science, chemistry, and biomanufacturing. The virtual equipment and lab assignments have been used for: (i) authentic online experimentation, (ii) homework and control assignments with traditional and blended courses, (iii) preparing students for hands-on work in real labs, (iv) lecture demonstrations, and (v) performance-based assessment of students’ ability to apply gained theoretical knowledge for operating actual equipment and solving practical problems. Using the associated learning and content management system (LCMS) and authoring tools, instructors kept track of student performance and designed new virtual experiments and more personalized learning assignments for students. Virtual X-Ray Laboratory and Web-based Environment for Single-Use Upstream Bioprocessing have been used to illustrate the implementation of the concept of Interactive and Adjustable Cloud-based e-Learning Tools. The virtual labs and e-learning environments have been used at two-year and four-year colleges and universities in the USA, UK, Tanzania and some other countries. The virtual X-Ray lab has also been integrated with the MITx course delivered via the MOOC (massive open online course) edX platform for Massachusetts Institute of Technology undergraduate students.


2004 ◽  
Vol 827 ◽  
Author(s):  
Laura M. Bartolo ◽  
Sharon C. Glotzer ◽  
Javed I. Khan ◽  
Adam C. Powell ◽  
Donald R. Sadoway ◽  
...  

AbstractThe National Science Foundation's National Science Digital Library (NSDL) Program is a premier collective portal of authoritative scientific resources supporting education and research. With funding from NSF, the Materials Digital Library (MatDL) is a collaborative project being developed by the National Institute of Standards and Technology's Materials Science and Engineering Laboratory (NIST/MSEL), the Department of Materials Science and Engineering at the Massachusetts Institute of Technology (MIT), the Department of Chemical Engineering and the Department of Materials Science and Engineering at the University of Michigan (U-M), with Kent State University and University of Colorado at Boulder providing the materials science informatics and workflow technology backbone. As part of the NSDL program, MatDL aims to supports the interface of materials science information and its cognate disciplines, with an emphasis on soft matter. Initial content of MatDL begins with resources selected from NIST/MSEL. Students and faculty in three types of materials science and engineering (MSE) courses at MIT and U-M are taking part in a pilot to use and contribute to MatDL utilizing domain-specific authoring tools. Given the central and interdisciplinary role of materials science in science and engineering, two goals of MatDL are to: 1.) expand its founding partnership with additional participants from the MSE community; and 2.) facilitate the flow of digital materials related knowledge from laboratories where the most recent research discoveries are taking place to the classrooms where new scientists are being trained.


MRS Bulletin ◽  
1992 ◽  
Vol 17 (4) ◽  
pp. 35-37 ◽  
Author(s):  
B. Barnett ◽  
H.K. Bowen ◽  
K. Clark

The use of manmade materials progressed rather slowly until the science and technology of metals, refractories, and glass burst forth in the mid-1800s and continued its infancy through the first decades of the 20th century. In fact, much of the scientific wherewithal in industrial nations focused on the development of manmade materials from the standpoint of properties and fabrication processes. From the discipline of metal physics, which emerged in the 1930s, and from the scientific activities in ceramics, polymers, and electronic materials that blossomed in the 1940s and 1950s, a science and engineering base was established, enabling advanced materials and components to be fabricated, often for specific end-user applications. The molecular engineering of crystals, for example, has its roots in von Hippel's studies of dielectric materials at the Massachusetts Institute of Technology, which began in the 1930s. In this time frame, society, which had primarily used such materials as wood, gypsum, clay, copper, zinc, lead, and iron, turned to a broader set of materials to meet new uses. These new applications required an understanding not only of the composition of matter, but of novel and difficult processes as well. Research specialties broadened.From the late 1950s to the present, the knowledge base for materials and components has exploded. In this period, the scientific and technological field of endeavor—materials science and engineering (MS&E) — evolved from a collection of discrete, disparate arts and crafts with varied amounts of science and practitioners who generally did not stray from their own specialties to a more diffuse field where researchers take a broader approach to materials research and practice.


Impact ◽  
2020 ◽  
Vol 2020 (9) ◽  
pp. 80-82
Author(s):  
Shuichi Akasaka

Engineers and materials scientists are constantly working to improve the quality of our built environments and vehicles, including noise levels and vibration. The researchers pursuing the duel goals of safety and comfort are increasingly being challenged as the projects they work on advance technologically, in size and are constructed with new materials. Buildings grow taller and must compensate for greater movement and vibrations from wind or shifting foundations. Cars especially are undergoing drastic changes that require a rethinking of the material and designs of their frames, panels, doors and windows. The advent of electric motors for example, has reduced overall noise but shifted the frequency of sound higher, making them more uncomfortable. Assistant Professor Shuichi Akasaka, who is based in the Department of Materials Science and Engineering at Tokyo Institute of Technology in Japan, is carrying out research to design new materials that reduce vibration and noise, and create the quiet, safe automobiles and living spaces of the future.


1993 ◽  
Vol 8 (1) ◽  
pp. 25-28
Author(s):  
G. D. Yao ◽  
C. L. Kuo

X-ray diffraction quantitative phase analysis is a technique widely used in materials science and engineering research. The method proposed by Zevin [L. S. Zevin, J. Appl. Cryst. 10, 147 (1977)] has proven very useful in practice because standards or pure crystalline phases are not needed, but, Zevin only described the case ofnsamples, each of which contain different concentrations of the samenphases. An extension of this method, in which the reference samples could contain less phases than the analyzed sample is proposed in this paper. The absence of phases in reference samples is not arbitrary but depends on certain conditions. The conditions required to solve the equations are discussed in detail using the concepts of the set theory, and the results of confirmation experiments agree well with the theory.


1997 ◽  
Vol 3 (S2) ◽  
pp. 281-282
Author(s):  
Anthony J. Garratt-Reed

The Center for Materials Science and Engineering at MIT, a Materials Research Science and Engineering Center sponsored by the National Science Foundation, maintains and supports, amongst others, an Electron Microscopy Shared Experimental Facility. The purpose of this paper is to highlight selected recent research results for high-resolution investigations performed in that facility.The facility owns the first VG HB603 intermediate-voltage FEG-STEM, which operates at 250KeV and is equipped with a high-solid-angle x-ray detector and a Gatan Digi-Peels. It was intended to be, and has been, used for high sensitivity, high spatial resolution microanalysis. It is well-known that the “resolution” of an x-ray analysis is intimately (and inversely) related to its sensitivity; one extreme situation occurs when analyzing, for example, a diffusion profile, when the need is to determine the composition to the highest precision. An example of such an analysis is given in fig. 1. In this case, the sample is a 1.4Cr-0.8C pearlitic steel, and the chromium analysis is carried out across a cementite plate. During the growth of the pearlite, the chromium, which is not thermodynamically required to redistribute, nevertheless diffuses along the growth interface towards the cementite, resulting in a comparatively wide depletion profile in the ferrite, and a very narrow enrichment in the cementite.


Sign in / Sign up

Export Citation Format

Share Document