scholarly journals Genus distributions of cubic series-parallel graphs

2014 ◽  
Vol Vol. 16 no. 3 (Graph Theory) ◽  
Author(s):  
Jonathan L. Gross ◽  
Michal Kotrbčík ◽  
Timothy Sun

Graph Theory International audience We derive a quadratic-time algorithm for the genus distribution of any 3-regular, biconnected series-parallel graph, which we extend to any biconnected series-parallel graph of maximum degree at most 3. Since the biconnected components of every graph of treewidth 2 are series-parallel graphs, this yields, by use of bar-amalgamation, a quadratic-time algorithm for every graph of treewidth at most 2 and maximum degree at most 3.

2013 ◽  
Vol Vol. 15 no. 3 (Graph Theory) ◽  
Author(s):  
Delia Garijo ◽  
Antonio González ◽  
Alberto Márquez

Graph Theory International audience We study a graph parameter related to resolving sets and metric dimension, namely the resolving number, introduced by Chartrand, Poisson and Zhang. First, we establish an important difference between the two parameters: while computing the metric dimension of an arbitrary graph is known to be NP-hard, we show that the resolving number can be computed in polynomial time. We then relate the resolving number to classical graph parameters: diameter, girth, clique number, order and maximum degree. With these relations in hand, we characterize the graphs with resolving number 3 extending other studies that provide characterizations for smaller resolving number.


2005 ◽  
Vol DMTCS Proceedings vol. AE,... (Proceedings) ◽  
Author(s):  
Gordana Manić ◽  
Yoshiko Wakabayashi

International audience We consider the problems of finding the maximum number of vertex-disjoint triangles (VTP) and edge-disjoint triangles (ETP) in a simple graph. Both problems are NP-hard. The algorithm with the best approximation guarantee known so far for these problems has ratio $3/2 + ɛ$, a result that follows from a more general algorithm for set packing obtained by Hurkens and Schrijver in 1989. We present improvements on the approximation ratio for restricted cases of VTP and ETP that are known to be APX-hard: we give an approximation algorithm for VTP on graphs with maximum degree 4 with ratio slightly less than 1.2, and for ETP on graphs with maximum degree 5 with ratio 4/3. We also present an exact linear-time algorithm for VTP on the class of indifference graphs.


2005 ◽  
Vol DMTCS Proceedings vol. AE,... (Proceedings) ◽  
Author(s):  
Guillaume Fertin ◽  
André Raspaud

International audience An acyclic coloring of a graph $G$ is a coloring of its vertices such that: (i) no two neighbors in $G$ are assigned the same color and (ii) no bicolored cycle can exist in $G$. The acyclic chromatic number of $G$ is the least number of colors necessary to acyclically color $G$, and is denoted by $a(G)$. We show that any graph of maximum degree $\Delta$ has acyclic chromatic number at most $\frac{\Delta (\Delta -1) }{ 2}$ for any $\Delta \geq 5$, and we give an $O(n \Delta^2)$ algorithm to acyclically color any graph of maximum degree $\Delta$ with the above mentioned number of colors. This result is roughly two times better than the best general upper bound known so far, yielding $a(G) \leq \Delta (\Delta -1) +2$. By a deeper study of the case $\Delta =5$, we also show that any graph of maximum degree $5$ can be acyclically colored with at most $9$ colors, and give a linear time algorithm to achieve this bound.


2012 ◽  
Vol Vol. 14 no. 1 (Graph Theory) ◽  
Author(s):  
Gunnar Brinkmann ◽  
Simon Crevals ◽  
Hadrien Melot ◽  
Leanne Rylands ◽  
Eckhard Steffen

Graph Theory International audience We present theoretical and computational results on alpha-labelings of trees. The theorems proved in this paper were inspired by the results of a computer investigation of alpha-labelings of all trees with up to 26 vertices, all trees with maximum degree 3 and up to 36 vertices, all trees with maximum degree 4 and up to 32 vertices and all trees with maximum degree 5 and up to 31 vertices. We generalise a criterion for trees to have nonzero alpha-deficit, and prove an unexpected result on the alpha-deficit of trees with a vertex of large degree compared to the order of the tree.


2005 ◽  
Vol DMTCS Proceedings vol. AE,... (Proceedings) ◽  
Author(s):  
Andrew D. King ◽  
Bruce A. Reed ◽  
Adrian R. Vetta

International audience It was conjectured by Reed [reed98conjecture] that for any graph $G$, the graph's chromatic number $χ (G)$ is bounded above by $\lceil Δ (G) +1 + ω (G) / 2\rceil$ , where $Δ (G)$ and $ω (G)$ are the maximum degree and clique number of $G$, respectively. In this paper we prove that this bound holds if $G$ is the line graph of a multigraph. The proof yields a polynomial time algorithm that takes a line graph $G$ and produces a colouring that achieves our bound.


1987 ◽  
Vol 109 (4) ◽  
pp. 487-490 ◽  
Author(s):  
Hong-Sen Yan ◽  
Frank Harary

One of the major steps in the development of a systematic design methodology for the creative design of vehicle mechanisms is to obtain all possible link assortments, and then to generate the catalogs of kinematic chains. If the generalized mathematical expressions for the maximum value M of the maximum number of joints incident to a link of kinematic chains with N links and J joints can be derived, the process of solving link assortments can be more systematic. Using elementary concepts of graph theory, we derived explicit relationships for M for two regions of the J-N plane.


2015 ◽  
Vol Vol. 17 no. 1 (Graph Theory) ◽  
Author(s):  
Mauricio Soto ◽  
Christopher Thraves-Caro

Graph Theory International audience In this document, we study the scope of the following graph model: each vertex is assigned to a box in ℝd and to a representative element that belongs to that box. Two vertices are connected by an edge if and only if its respective boxes contain the opposite representative element. We focus our study on the case where boxes (and therefore representative elements) associated to vertices are spread in ℝ. We give both, a combinatorial and an intersection characterization of the model. Based on these characterizations, we determine graph families that contain the model (e. g., boxicity 2 graphs) and others that the new model contains (e. g., rooted directed path). We also study the particular case where each representative element is the center of its respective box. In this particular case, we provide constructive representations for interval, block and outerplanar graphs. Finally, we show that the general and the particular model are not equivalent by constructing a graph family that separates the two cases.


2012 ◽  
Vol Vol. 14 no. 2 (Graph Theory) ◽  
Author(s):  
Dieter Rautenbach ◽  
Friedrich Regen

Graph Theory International audience We study graphs G in which the maximum number of vertex-disjoint cycles nu(G) is close to the cyclomatic number mu(G), which is a natural upper bound for nu(G). Our main result is the existence of a finite set P(k) of graphs for all k is an element of N-0 such that every 2-connected graph G with mu(G)-nu(G) = k arises by applying a simple extension rule to a graph in P(k). As an algorithmic consequence we describe algorithms calculating minmu(G)-nu(G), k + 1 in linear time for fixed k.


2006 ◽  
Vol DMTCS Proceedings vol. AG,... (Proceedings) ◽  
Author(s):  
Michael Drmota

International audience The purpose of this survey is to present recent results concerning concentration properties of extremal parameters of random discrete structures. A main emphasis is placed on the height and maximum degree of several kinds of random trees. We also provide exponential tail estimates for the height distribution of scale-free trees.


2009 ◽  
Vol 19 (02) ◽  
pp. 119-140 ◽  
Author(s):  
PROSENJIT BOSE ◽  
MICHIEL SMID ◽  
DAMING XU

Given a triangulation G, whose vertex set V is a set of n points in the plane, and given a real number γ with 0 < γ < π, we design an O(n)-time algorithm that constructs a connected subgraph G' of G with vertex set V whose maximum degree is at most 14 + ⌈2π/γ⌉. If G is the Delaunay triangulation of V, and γ = 2π/3, we show that G' is a t-spanner of V (for some constant t) with maximum degree at most 17, thereby improving the previously best known degree bound of 23. If G is a triangulation satisfying the diamond property, then for a specific range of values of γ dependent on the angle of the diamonds, we show that G' is a t-spanner of V (for some constant t) whose maximum degree is bounded by a constant dependent on γ. If G is the graph consisting of all Delaunay edges of length at most 1, and γ = π/3, we show that a modified version of the algorithm produces a plane subgraph G' of the unit-disk graph which is a t-spanner (for some constant t) of the unit-disk graph of V, whose maximum degree is at most 20, thereby improving the previously best known degree bound of 25.


Sign in / Sign up

Export Citation Format

Share Document