scholarly journals A conjecture on the number of Hamiltonian cycles on thin grid cylinder graphs

2015 ◽  
Vol Vol. 17 no. 1 (Graph Theory) ◽  
Author(s):  
Olga Bodroža-Pantić ◽  
Harris Kwong ◽  
Milan Pantić

Graph Theory International audience We study the enumeration of Hamiltonian cycles on the thin grid cylinder graph $C_m \times P_{n+1}$. We distinguish two types of Hamiltonian cycles, and denote their numbers $h_m^A(n)$ and $h_m^B(n)$. For fixed $m$, both of them satisfy linear homogeneous recurrence relations with constant coefficients, and we derive their generating functions and other related results for $m\leq10$. The computational data we gathered suggests that $h^A_m(n)\sim h^B_m(n)$ when $m$ is even.

2006 ◽  
Vol DMTCS Proceedings vol. AG,... (Proceedings) ◽  
Author(s):  
Chris Deugau ◽  
Frank Ruskey

International audience We show that a family of generalized meta-Fibonacci sequences arise when counting the number of leaves at the largest level in certain infinite sequences of k-ary trees and restricted compositions of an integer. For this family of generalized meta-Fibonacci sequences and two families of related sequences we derive ordinary generating functions and recurrence relations.


Filomat ◽  
2017 ◽  
Vol 31 (2) ◽  
pp. 309-320 ◽  
Author(s):  
B.S. El-Desouky ◽  
Nenad Cakic ◽  
F.A. Shiha

In this paper we give a new family of numbers, called ??-Whitney numbers, which gives generalization of many types of Whitney numbers and Stirling numbers. Some basic properties of these numbers such as recurrence relations, explicit formulas and generating functions are given. Finally many interesting special cases are derived.


1997 ◽  
Vol 20 (4) ◽  
pp. 759-768 ◽  
Author(s):  
A. K. Agarwal ◽  
R. Balasubrananian

In this paper we study thosen-color partitions of Agarwal and Andrews, 1987, in which each pair of parts has weighted difference equal to−2Results obtained in this paper for these partitions include several combinatorial identities, recurrence relations, generating functions, relationships with the divisor function and computer produced tables. By using these partitions an explicit expression for the sum of the divisors of odd integers is given. It is shown how these partitions arise in the study of conjugate and self-conjugaten-color partitions. A combinatorial identity for self-conjugaten-color partitions is also obtained. We conclude by posing several open problems in the last section.


2012 ◽  
Vol 23 (10) ◽  
pp. 1250106 ◽  
Author(s):  
DONNY HURLEY ◽  
MICHAEL P. TUITE

We consider all genus zero and genus one correlation functions for the Virasoro vacuum descendants of a vertex operator algebra. These are described in terms of explicit generating functions that can be combinatorially expressed in terms of graph theory related to derangements in the genus zero case and to partial permutations in the genus one case.


2015 ◽  
Vol Vol. 17 no. 1 (Graph Theory) ◽  
Author(s):  
Mauricio Soto ◽  
Christopher Thraves-Caro

Graph Theory International audience In this document, we study the scope of the following graph model: each vertex is assigned to a box in ℝd and to a representative element that belongs to that box. Two vertices are connected by an edge if and only if its respective boxes contain the opposite representative element. We focus our study on the case where boxes (and therefore representative elements) associated to vertices are spread in ℝ. We give both, a combinatorial and an intersection characterization of the model. Based on these characterizations, we determine graph families that contain the model (e. g., boxicity 2 graphs) and others that the new model contains (e. g., rooted directed path). We also study the particular case where each representative element is the center of its respective box. In this particular case, we provide constructive representations for interval, block and outerplanar graphs. Finally, we show that the general and the particular model are not equivalent by constructing a graph family that separates the two cases.


10.37236/1052 ◽  
2006 ◽  
Vol 13 (1) ◽  
Author(s):  
Brad Jackson ◽  
Frank Ruskey

We consider a family of meta-Fibonacci sequences which arise in studying the number of leaves at the largest level in certain infinite sequences of binary trees, restricted compositions of an integer, and binary compact codes. For this family of meta-Fibonacci sequences and two families of related sequences we derive ordinary generating functions and recurrence relations. Included in these families of sequences are several well-known sequences in the Online Encyclopedia of Integer Sequences (OEIS).


Author(s):  
Kunle Adegoke

We study various properties of the polygonal numbers; such as their recurrence relations, fundamental identities, weighted binomial and ordinary sums and the partial sums and generating functions of their powers. A feature of our results is that they are presented naturally in terms of the polygonal numbers themselves and not in terms of arbitrary integers as is the case in most literature.


2003 ◽  
Vol DMTCS Proceedings vol. AC,... (Proceedings) ◽  
Author(s):  
Michel Nguyên Thê

International audience This paper gives a survey of the limit distributions of the areas of different types of random walks, namely Dyck paths, bilateral Dyck paths, meanders, and Bernoulli random walks, using the technology of generating functions only.


2012 ◽  
Vol Vol. 14 no. 2 (Graph Theory) ◽  
Author(s):  
Dieter Rautenbach ◽  
Friedrich Regen

Graph Theory International audience We study graphs G in which the maximum number of vertex-disjoint cycles nu(G) is close to the cyclomatic number mu(G), which is a natural upper bound for nu(G). Our main result is the existence of a finite set P(k) of graphs for all k is an element of N-0 such that every 2-connected graph G with mu(G)-nu(G) = k arises by applying a simple extension rule to a graph in P(k). As an algorithmic consequence we describe algorithms calculating minmu(G)-nu(G), k + 1 in linear time for fixed k.


2011 ◽  
Vol DMTCS Proceedings vol. AO,... (Proceedings) ◽  
Author(s):  
Hoda Bidkhori

International audience In this paper we study finite Eulerian posets which are binomial or Sheffer. These important classes of posets are related to the theory of generating functions and to geometry. The results of this paper are organized as follows: (1) We completely determine the structure of Eulerian binomial posets and, as a conclusion, we are able to classify factorial functions of Eulerian binomial posets; (2) We give an almost complete classification of factorial functions of Eulerian Sheffer posets by dividing the original question into several cases; (3) In most cases above, we completely determine the structure of Eulerian Sheffer posets, a result stronger than just classifying factorial functions of these Eulerian Sheffer posets. We also study Eulerian triangular posets. This paper answers questions posed by R. Ehrenborg and M. Readdy. This research is also motivated by the work of R. Stanley about recognizing the \emphboolean lattice by looking at smaller intervals. Nous étudions les ensembles partiellement ordonnés finis (EPO) qui sont soit binomiaux soit de type Sheffer (deux notions reliées aux séries génératrices et à la géométrie). Nos résultats sont les suivants: (1) nous déterminons la structure des EPO Euleriens et binomiaux; nous classifions ainsi les fonctions factorielles de tous ces EPO; (2) nous donnons une classification presque complète des fonctions factorielles des EPO Euleriens de type Sheffer; (3) dans la plupart de ces cas, nous déterminons complètement la structure des EPO Euleriens et Sheffer, ce qui est plus fort que classifier leurs fonctions factorielles. Nous étudions aussi les EPO Euleriens triangulaires. Cet article répond à des questions de R. Ehrenborg and M. Readdy. Il est aussi motivé par le travail de R. Stanley sur la reconnaissance du treillis booléen via l'étude des petits intervalles.


Sign in / Sign up

Export Citation Format

Share Document