scholarly journals The probability of planarity of a random graph near the critical point

2013 ◽  
Vol DMTCS Proceedings vol. AS,... (Proceedings) ◽  
Author(s):  
Marc Noy ◽  
Vlady Ravelomanana ◽  
Juanjo Rué

International audience Erdős and Rényi conjectured in 1960 that the limiting probability $p$ that a random graph with $n$ vertices and $M=n/2$ edges is planar exists. It has been shown that indeed p exists and is a constant strictly between 0 and 1. In this paper we answer completely this long standing question by finding an exact expression for this probability, whose approximate value turns out to be $p ≈0.99780$. More generally, we compute the probability of planarity at the critical window of width $n^{2/3}$ around the critical point $M=n/2$. We extend these results to some classes of graphs closed under taking minors. As an example, we show that the probability of being series-parallel converges to 0.98003. Our proofs rely on exploiting the structure of random graphs in the critical window, obtained previously by Janson, Łuczak and Wierman, by means of generating functions and analytic methods. This is a striking example of how analytic combinatorics can be applied to classical problems on random graphs.

2002 ◽  
Vol Vol. 5 ◽  
Author(s):  
Nikolaos Fountoulakis ◽  
Colin McDiarmid

International audience We present a full analysis of the expected number of 'rigid' 3-colourings of a sparse random graph. This shows that, if the average degree is at least 4.99, then as n → ∞ the expected number of such colourings tends to 0 and so the probability that the graph is 3-colourable tends to 0. (This result is tight, in that with average degree 4.989 the expected number tends to ∞.) This bound appears independently in Kaporis \textitet al. [Kap]. We then give a minor improvement, showing that the probability that the graph is 3-colourable tends to 0 if the average degree is at least 4.989.


2020 ◽  
Vol DMTCS Proceedings, 28th... ◽  
Author(s):  
Stephen Melczer ◽  
Mark C. Wilson

International audience We consider the enumeration of walks on the two-dimensional non-negative integer lattice with steps defined by a finite set S ⊆ {±1, 0}2 . Up to isomorphism there are 79 unique two-dimensional models to consider, and previous work in this area has used the kernel method, along with a rigorous computer algebra approach, to show that 23 of the 79 models admit D-finite generating functions. In 2009, Bostan and Kauers used Pade ́-Hermite approximants to guess differential equations which these 23 generating functions satisfy, in the process guessing asymptotics of their coefficient sequences. In this article we provide, for the first time, a complete rigorous verification of these guesses. Our technique is to use the kernel method to express 19 of the 23 generating functions as diagonals of tri-variate rational functions and apply the methods of analytic combinatorics in several variables (the remaining 4 models have algebraic generating functions and can thus be handled by univariate techniques). This approach also shows the link between combinatorial properties of the models and features of its asymptotics such as asymptotic and polynomial growth factors. In addition, we give expressions for the number of walks returning to the x-axis, the y-axis, and the origin, proving recently conjectured asymptotics of Bostan, Chyzak, van Hoeij, Kauers, and Pech.


2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Konstantinos Panagiotou ◽  
Benedikt Stufler ◽  
Kerstin Weller

International audience We study the uniform random graph $\mathsf{C}_n$ with $n$ vertices drawn from a subcritical class of connected graphs. Our main result is that the rescaled graph $\mathsf{C}_n / \sqrt{n}$ converges to the Brownian Continuum Random Tree $\mathcal{T}_{\mathsf{e}}$ multiplied by a constant scaling factor that depends on the class under consideration. In addition, we provide subgaussian tail bounds for the diameter $\text{D}(\mathsf{C}_n)$ and height $\text{H}(\mathsf{C}_n^\bullet)$ of the rooted random graph $\mathsf{C}_n^\bullet$. We give analytic expressions for the scaling factor of several classes, including for example the prominent class of outerplanar graphs. Our methods also enable us to study first passage percolation on $\mathsf{C}_n$, where we show the convergence to $\mathcal{T}_{\mathsf{e}}$ under an appropriate rescaling. On s’int´eresse au comportement asymptotique du graphe aleatoire $\mathsf{C}_n$ sur $n$ sommets pris uniformément d’une classe sous-critique des graphes sur n sommets. Dans cette contribution nous montrons que le graphe normalisée$\mathsf{C}_n / \sqrt{n}$ converges vers un arbre aléatoire brownien continue Te multiplie par une constante qui dépends de la classede graphes considérée. Nous calculons l’expression analytique pour cette constante dans plusieurs cas parmi la classefameuse des graphes planaire extérieure. En plus, on montre que le diamètre $\text{D}(\mathsf{C}_n)$ et la hauteur $\text{H}(\mathsf{C}_n^\bullet)$ de l’équivalent racine de $\mathsf{C}_n$ sont bornes par des bornes sous gaussiens. Notre méthode nous permettons aussi de l’étudier la percolation du premier passage sur $\mathsf{C}_n$. Nous montrons que $\mathcal{T}_{\mathsf{e}}$ sujet a une changement d’échelle appropriée


2009 ◽  
Vol DMTCS Proceedings vol. AK,... (Proceedings) ◽  
Author(s):  
Konstantinos Panagiotou

International audience This work is devoted to the study of typical properties of random graphs from classes with structural constraints, like for example planar graphs, with the additional restriction that the average degree is fixed. More precisely, within a general analytic framework, we provide sharp concentration results for the number of blocks (maximal biconnected subgraphs) in a random graph from the class in question. Among other results, we discover that essentially such a random graph belongs with high probability to only one of two possible types: it either has blocks of at most logarithmic size, or there is a \emphgiant block that contains linearly many vertices, and all other blocks are significantly smaller. This extends and generalizes the results in the previous work [K. Panagiotou and A. Steger. Proceedings of the 20th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA '09), pp. 432-440, 2009], where similar statements were shown without the restriction on the average degree.


Author(s):  
Mark Newman

An introduction to the mathematics of the Poisson random graph, the simplest model of a random network. The chapter starts with a definition of the model, followed by derivations of basic properties like the mean degree, degree distribution, and clustering coefficient. This is followed with a detailed derivation of the large-scale structural properties of random graphs, including the position of the phase transition at which a giant component appears, the size of the giant component, the average size of the small components, and the expected diameter of the network. The chapter ends with a discussion of some of the shortcomings of the random graph model.


2003 ◽  
Vol 2003 (60) ◽  
pp. 3827-3840 ◽  
Author(s):  
P. N. Rathie ◽  
P. Zörnig

We study the birthday problem and some possible extensions. We discuss the unimodality of the corresponding exact probability distribution and express the moments and generating functions by means of confluent hypergeometric functionsU(−;−;−)which are computable using the software Mathematica. The distribution is generalized in two possible directions, one of them consists in considering a random graph with a single attracting center. Possible applications are also indicated.


10.37236/5327 ◽  
2016 ◽  
Vol 23 (2) ◽  
Author(s):  
Deepak Bal ◽  
Patrick Bennett ◽  
Andrzej Dudek ◽  
Paweł Prałat

Let $G$ be a graph in which each vertex initially has weight 1. In each step, the weight from a vertex $u$ to a neighbouring vertex $v$ can be moved, provided that the weight on $v$ is at least as large as the weight on $u$. The total acquisition number of $G$, denoted by $a_t(G)$, is the minimum possible size of the set of vertices with positive weight at the end of the process.LeSaulnier, Prince, Wenger, West, and Worah asked for the minimum value of $p=p(n)$ such that $a_t(\mathcal{G}(n,p)) = 1$ with high probability, where $\mathcal{G}(n,p)$ is a binomial random graph. We show that $p = \frac{\log_2 n}{n} \approx 1.4427 \ \frac{\log n}{n}$ is a sharp threshold for this property. We also show that almost all trees $T$ satisfy $a_t(T) = \Theta(n)$, confirming a conjecture of West.


2003 ◽  
Vol DMTCS Proceedings vol. AC,... (Proceedings) ◽  
Author(s):  
Michel Nguyên Thê

International audience This paper gives a survey of the limit distributions of the areas of different types of random walks, namely Dyck paths, bilateral Dyck paths, meanders, and Bernoulli random walks, using the technology of generating functions only.


2011 ◽  
Vol DMTCS Proceedings vol. AO,... (Proceedings) ◽  
Author(s):  
Hoda Bidkhori

International audience In this paper we study finite Eulerian posets which are binomial or Sheffer. These important classes of posets are related to the theory of generating functions and to geometry. The results of this paper are organized as follows: (1) We completely determine the structure of Eulerian binomial posets and, as a conclusion, we are able to classify factorial functions of Eulerian binomial posets; (2) We give an almost complete classification of factorial functions of Eulerian Sheffer posets by dividing the original question into several cases; (3) In most cases above, we completely determine the structure of Eulerian Sheffer posets, a result stronger than just classifying factorial functions of these Eulerian Sheffer posets. We also study Eulerian triangular posets. This paper answers questions posed by R. Ehrenborg and M. Readdy. This research is also motivated by the work of R. Stanley about recognizing the \emphboolean lattice by looking at smaller intervals. Nous étudions les ensembles partiellement ordonnés finis (EPO) qui sont soit binomiaux soit de type Sheffer (deux notions reliées aux séries génératrices et à la géométrie). Nos résultats sont les suivants: (1) nous déterminons la structure des EPO Euleriens et binomiaux; nous classifions ainsi les fonctions factorielles de tous ces EPO; (2) nous donnons une classification presque complète des fonctions factorielles des EPO Euleriens de type Sheffer; (3) dans la plupart de ces cas, nous déterminons complètement la structure des EPO Euleriens et Sheffer, ce qui est plus fort que classifier leurs fonctions factorielles. Nous étudions aussi les EPO Euleriens triangulaires. Cet article répond à des questions de R. Ehrenborg and M. Readdy. Il est aussi motivé par le travail de R. Stanley sur la reconnaissance du treillis booléen via l'étude des petits intervalles.


10.37236/8846 ◽  
2021 ◽  
Vol 28 (1) ◽  
Author(s):  
Mark Jerrum ◽  
Tamás Makai

We study the joint components in a random 'double graph' that is obtained by superposing red and blue binomial random graphs on $n$~vertices.  A joint component is a maximal set of vertices that supports both a red and a blue spanning tree.  We show that there are critical pairs of red and blue edge densities at which a giant joint component appears.  In contrast to the standard binomial graph model, the phase transition is first order:  the size of the largest joint component jumps from $O(1)$ vertices to $\Theta(n)$ at the critical point.  We connect this phenomenon to the properties of a certain bicoloured branching process. 


Sign in / Sign up

Export Citation Format

Share Document