scholarly journals A Parking Function Setting for Nabla Images of Schur Functions

2013 ◽  
Vol DMTCS Proceedings vol. AS,... (Proceedings) ◽  
Author(s):  
Yeonkyung Kim

International audience In this article, we show how the compositional refinement of the ``Shuffle Conjecture'' due to Jim Haglund, Jennifer Morse, and Mike Zabrocki can be used to express the image of a Schur function under the Bergeron-Garsia Nabla operator as a weighted sum of a suitable collection of ``Parking Functions.'' The validity of these expressions is, of course, going to be conjectural until the compositional refinement of the Shuffle Conjecture is established.

2009 ◽  
Vol DMTCS Proceedings vol. AK,... (Proceedings) ◽  
Author(s):  
Heesung Shin ◽  
Jiang Zeng

International audience For a fixed sequence of $n$ positive integers $(a,\bar{b}) := (a, b, b,\ldots, b)$, an $(a,\bar{b})$-parking function of length $n$ is a sequence $(p_1, p_2, \ldots, p_n)$ of positive integers whose nondecreasing rearrangement $q_1 \leq q_2 \leq \cdots \leq q_n$ satisfies $q_i \leq a+(i-1)b$ for any $i=1,\ldots, n$. A $(a,\bar{b})$-forest on $n$-set is a rooted vertex-colored forests on $n$-set whose roots are colored with the colors $0, 1, \ldots, a-1$ and the other vertices are colored with the colors $0, 1, \ldots, b-1$. In this paper, we construct a bijection between $(bc,\bar{b})$-parking functions of length $n$ and $(bc,\bar{b})$-forests on $n$-set with some interesting properties. As applications, we obtain a generalization of Gessel and Seo's result about $(c,\bar{1})$-parking functions [Ira M. Gessel and Seunghyun Seo, Electron. J. Combin. $\textbf{11}$(2)R27, 2004] and a refinement of Yan's identity [Catherine H. Yan, Adv. Appl. Math. $\textbf{27}$(2―3):641―670, 2001] between an inversion enumerator for $(bc,\bar{b})$-forests and a complement enumerator for $(bc,\bar{b})$-parking functions. Soit $(a,\bar{b}) := (a, b, b,\ldots, b)$ une suite d'entiers positifs. Une $(a,\bar{b})$-fonction de parking est une suite $(p_1, p_2, \ldots, p_n)$ d'entiers positives telle que son réarrangement non décroissant $q_1 \leq q_2 \leq \cdots \leq q_n$ satisfait $q_i \leq a+(i-1)b$ pour tout $i=1,\ldots, n$. Une $(a,\bar{b})$-forêt enracinée sur un $n$-ensemble est une forêt enracinée dont les racines sont colorées avec les couleurs $0, 1, \ldots, a-1$ et les autres sommets sont colorés avec les couleurs $0, 1, \ldots, b-1$. Dans cet article, on construit une bijection entre $(bc,\bar{b})$-fonctions de parking et $(bc,\bar{b})$-forêts avec des des propriétés intéressantes. Comme applications, on obtient une généralisation d'un résultat de Gessel-Seo sur $(c,\bar{1})$-fonctions de parking [Ira M. Gessel and Seunghyun Seo, Electron. J. Combin. $\textbf{11}$(2)R27, 2004] et une extension de l'identité de Yan [Catherine H. Yan, Adv. Appl. Math. $\textbf{27}$(2―3):641―670, 2001] entre l'énumérateur d'inversion de $(bc,\bar{b})$-forêts et l'énumérateur complémentaire de $(bc,\bar{b})$-fonctions de parking.


2008 ◽  
Vol DMTCS Proceedings vol. AJ,... (Proceedings) ◽  
Author(s):  
James Haglund ◽  
Sarah Mason ◽  
Kurt Luoto ◽  
Steph van Willigenburg

International audience We introduce a new basis for the algebra of quasisymmetric functions that naturally partitions Schur functions, called quasisymmetric Schur functions. We describe their expansion in terms of fundamental quasisymmetric functions and determine when a quasisymmetric Schur function is equal to a fundamental quasisymmetric function. We conclude by describing a Pieri rule for quasisymmetric Schur functions that naturally generalizes the Pieri rule for Schur functions. Nous étudions une nouvelle base des fonctions quasisymétriques, les fonctions de quasiSchur. Ces fonctions sont obtenues en spécialisant les fonctions de Macdonald dissymétrique. Nous décrivons les compositions que donne une simple fonction quasisymétriques. Nous décrivons aussi une règle par certaines fonctions de Schur.


2012 ◽  
Vol DMTCS Proceedings vol. AR,... (Proceedings) ◽  
Author(s):  
Angela Hicks

International audience In a 2010 paper Haglund, Morse, and Zabrocki studied the family of polynomials $\nabla C_{p1}\dots C_{pk}1$ , where $p=(p_1,\ldots,p_k)$ is a composition, $\nabla$ is the Bergeron-Garsia Macdonald operator and the $C_\alpha$ are certain slightly modified Hall-Littlewood vertex operators. They conjecture that these polynomials enumerate a composition indexed family of parking functions by area, dinv and an appropriate quasi-symmetric function. This refinement of the nearly decade old ``Shuffle Conjecture,'' when combined with properties of the Hall-Littlewood operators can be shown to imply the existence of certain bijections between these families of parking functions. In previous work to appear in her PhD thesis, the author has shown that the existence of these bijections follows from some relatively simple properties of a certain family of polynomials in one variable x with coefficients in $\mathbb{N}[q]$. In this paper we introduce those polynomials, explain their connection to the conjecture of Haglund, Morse, and Zabrocki, and explore some of their surprising properties, both proven and conjectured. Dans un article de 2010, Haglund, Morse et Zabrocki étudient la famille de polynômes $\nabla C_{p1}\dots C_{pk}1$ où $p=(p_1,\ldots,p_k)$ est une composition, $\nabla$ est l’opérateur de Bergeron-Garsia et les $C_\alpha$ sont des opérateurs ``vertex'' de Hall-Littlewood légèrement altérés. Il posent la conjecture que ces polynômes donnent l’énumération d'une famille de fonctions ``parking'', indexées par des compositions, par aire, le ``dinv'' et une fonction quasi-symétrique associée. Cette conjecture raffine la conjecture ``Shuffle'', qui est âgée de presque dix ans. On peut montrer, a partir de cette conjecture, que les propriétés des opérateurs de Hall-Littlewood, impliquent l'existence de certaines bijections entre ces familles de fonctions ``parking''. Dans un précédent travail , qui fait partie de sa thèse de doctorat, l'auteur montre que l’existence de ces bijections découle de certaines propriétés relativement simples d'une famille de polynômes à une variable x, avec coefficients dans $\mathbb{N}[q]$. Dans cet article, on introduit ces polynômes, on explique leur connexion avec la conjecture de Haglund, Morse et Zabrocki, et on explore certaines de leurs propriétés surprenantes, qu'elles soient prouvées ou seulement conjecturées.


2011 ◽  
Vol DMTCS Proceedings vol. AO,... (Proceedings) ◽  
Author(s):  
Jason Bandlow ◽  
Anne Schilling ◽  
Mike Zabrocki

International audience We prove a Murnaghan–Nakayama rule for k-Schur functions of Lapointe and Morse. That is, we give an explicit formula for the expansion of the product of a power sum symmetric function and a k-Schur function in terms of k-Schur functions. This is proved using the noncommutative k-Schur functions in terms of the nilCoxeter algebra introduced by Lam and the affine analogue of noncommutative symmetric functions of Fomin and Greene. Nous prouvons une règle de Murnaghan-Nakayama pour les fonctions de k-Schur de Lapointe et Morse, c'est-à-dire que nous donnons une formule explicite pour le développement du produit d'une fonction symétrique "somme de puissances'' et d'une fonction de k-Schur en termes de fonctions k-Schur. Ceci est prouvé en utilisant les fonctions non commutatives k-Schur en termes d'algèbre nilCoxeter introduite par Lam et l'analogue affine des fonctions symétriques non commutatives de Fomin et Greene.


2011 ◽  
Vol DMTCS Proceedings vol. AO,... (Proceedings) ◽  
Author(s):  
Sarah K Mason ◽  
Jeffrey Remmel

International audience Haglund, Luoto, Mason, and van Willigenburg introduced a basis for quasisymmetric functions called the $\textit{quasisymmetric Schur function basis}$ which are generated combinatorially through fillings of composition diagrams in much the same way as Schur functions are generated through reverse column-strict tableaux. We introduce a new basis for quasisymmetric functions called the $\textit{row-strict quasisymmetric Schur function basis}$ which are generated combinatorially through fillings of composition diagrams in much the same way as Schur functions are generated through row-strict tableaux. We describe the relationship between this new basis and other known bases for quasisymmetric functions, as well as its relationship to Schur polynomials. We obtain a refinement of the omega transform operator as a result of these relationships. Haglund, Luoto, Mason, et van Willigenburg ont introduit une base pour les fonctions quasi-symétriques appelée $\textit{base des fonctions de Schur quasi-symétriques}$, qui sont construites en remplissant des diagrammes de compositions, d'une manière très semblable à la construction des fonctions de Schur à partir des tableaux "column-strict'' (ordre strict sur les colonnes). Nous introduisons une nouvelle base pour les fonctions quasi-symétriques appelée $\textit{base des fonctions de Schur quasi-symétriques "row-strict''}$, qui sont construites en remplissant des diagrammes de compositions, d'une manière très semblable à la construction des fonctions de Schur à partir des tableaux "row-strict'' (ordre strict sur les lignes). Nous décrivons la relation entre cette nouvelle base et d'autres bases connues pour les fonctions quasi-symétriques, ainsi que ses relations avec les polynômes de Schur. Nous obtenons un raffinement de l'opérateur oméga comme conséquence de ces relations.


2010 ◽  
Vol DMTCS Proceedings vol. AN,... (Proceedings) ◽  
Author(s):  
Sami H. Assaf ◽  
Peter R. W. McNamara

International audience The Pieri rule expresses the product of a Schur function and a single row Schur function in terms of Schur functions. We extend the classical Pieri rule by expressing the product of a skew Schur function and a single row Schur function in terms of skew Schur functions. Like the classical rule, our rule involves simple additions of boxes to the original skew shape. Our proof is purely combinatorial and extends the combinatorial proof of the classical case. La règle de Pieri exprime le produit d'une fonction de Schur et de la fonction de Schur d'une seule ligne en termes de fonctions de Schur. Nous étendons la règle classique de Pieri en exprimant le produit d'un fonction gauche de Schur et de la fonction de Schur d'une ligne en termes de fonctions gauches de Schur. Comme la règle classique, notre règle implique l'ajout de cases à la forme gauche initiale. Notre preuve est purement combinatoire et étend celle du cas classique.


2014 ◽  
Vol DMTCS Proceedings vol. AT,... (Proceedings) ◽  
Author(s):  
Emily Leven

International audience The Classical Shuffle Conjecture of Haglund et al. (2005) has a symmetric function side and a combinatorial side. The combinatorial side $q,t$-enumerates parking functions in the $n ×n$ lattice. The symmetric function side may be simply expressed as $∇ e_n$ , where $∇$ is the Macdonald eigen-operator introduced by Bergeron and Garsia (1999) and $e_n$ is the elementary symmetric function. The combinatorial side has been extended to parking functions in the $m ×n$ lattice for coprime $m,n$ by Hikita (2012). Recently, Gorsky and Negut have been able to extend the Shuffle Conjecture by combining their work (2012a, 2012b, 2013) (related to work of Schiffmann and Vasserot (2011, 2013)) with Hikita's combinatorial results. We prove this new conjecture for the cases $m=2$ and $n=2$ .


2011 ◽  
Vol DMTCS Proceedings vol. AO,... (Proceedings) ◽  
Author(s):  
Jeffrey Ferreira

International audience We establish several properties of an algorithm defined by Mason and Remmel (2010) which inserts a positive integer into a row-strict composition tableau. These properties lead to a Littlewood-Richardson type rule for expanding the product of a row-strict quasisymmetric Schur function and a symmetric Schur function in terms of row-strict quasisymmetric Schur functions. Nous établissons plusieurs propriétés d'un algorithme défini par Mason et Remmel (2010), qui insère un entier positif dans un tableau dont la forme est une composition, avec ordre strict sur les lignes (row-strict). Ces propriétés conduisent à une règle de type Littlewood-Richardson pour étendre le produit d'une fonction de Schur quasi-symétrique "row-strict'' et d'une fonction de Schur symétrique en termes de fonctions de Schur quasi-symétriques "row-strict''.


2011 ◽  
Vol DMTCS Proceedings vol. AO,... (Proceedings) ◽  
Author(s):  
Cristina Ballantine

International audience Since every even power of the Vandermonde determinant is a symmetric polynomial, we want to understand its decomposition in terms of the basis of Schur functions. We investigate several combinatorial properties of the coefficients in the decomposition. In particular, I will give a recursive approach for computing the coefficient of the Schur function $s_μ$ in the decomposition of an even power of the Vandermonde determinant in $n+1$ variables in terms of the coefficient of the Schur function $s_λ$ in the decomposition of the same even power of the Vandermonde determinant in $n$ variables if the Young diagram of $μ$ is obtained from the Young diagram of $λ$ by adding a tetris type shape to the top or to the left. Comme toute puissance paire du déterminant de Vandermonde est un polynôme symétrique, nous voulons comprendre sa décomposition dans la base des fonctions de Schur. Nous allons étudier plusieurs propriétés combinatoires des coefficients de la décomposition. En particulier, nous allons donner une approche récursive pour le calcul du coefficient de la fonction de Schur $s_μ$ dans la décomposition d'une puissance paire du déterminant de Vandermonde en $n+1$ variables, en fonction du coefficient de la fonction de Schur $s_λ$ dans la décomposition de la même puissance paire du déterminant de Vandermonde en $n$ variables, lorsque le diagramme de Young de $μ$ est obtenu à partir du diagramme de Young de $λ$ par l'addition d'une forme de type tetris vers le haut ou vers la gauche.


2008 ◽  
Vol DMTCS Proceedings vol. AJ,... (Proceedings) ◽  
Author(s):  
N. Bergeron ◽  
F. Descouens ◽  
M. Zabrocki

International audience We introduce non-commutative analogs of $k$-Schur functions and prove that their images by the non-commutative nabla operator $\blacktriangledown$ is ribbon Schur positive, up to a global sign. Inspired by these results, we define new filtrations of the usual $(q,t)$-Catalan polynomials by computing the image of certain commutative $k$-Schur functions by the commutative nabla operator $\nabla$. In some particular cases, we give a combinatorial interpretation of these polynomials in terms of nested quantum Dick paths. Nous introduisons des analogues non commutatifs des $k$-fonctions de Schur et nous prouvons que leurs images par l'opérateur nabla non commutatif $\blacktriangledown$ est Schur-rubans positif, à un signe global près. Guidés par ses résultats, nous définissons de nouvelles filtrations des $(q,t)$-nombres de Catalan usuels en calculant l'image de certaines $k$-fonctions de Schur par l'opérateur nabla commutatif $\nabla$. Dans certains cas particuliers, nous donnons une interprétation combinatoire de ces polynômes en termes de chemins de Dyck imbriqués.


Sign in / Sign up

Export Citation Format

Share Document