noncommutative symmetric functions
Recently Published Documents


TOTAL DOCUMENTS

33
(FIVE YEARS 2)

H-INDEX

7
(FIVE YEARS 0)

2020 ◽  
Vol 24 (3) ◽  
pp. 557-576
Author(s):  
Jean-Christophe Novelli ◽  
Jean-Yves Thibon ◽  
Frédéric Toumazet

10.37236/5949 ◽  
2016 ◽  
Vol 23 (4) ◽  
Author(s):  
Rebecca Patrias

Motivated by work of Buch on set-valued tableaux in relation to the K-theory of the Grassmannian, Lam and Pylyavskyy studied six combinatorial Hopf algebras that can be thought of as K-theoretic analogues of the Hopf algebras of symmetric functions, quasisymmetric functions, noncommutative symmetric functions, and of the Malvenuto-Reutenauer Hopf algebra of permutations. They described the bialgebra structure in all cases that were not yet known but left open the question of finding explicit formulas for the antipode maps. We give combinatorial formulas for the antipode map for the K-theoretic analogues of the symmetric functions, quasisymmetric functions, and noncommutative symmetric functions.


10.37236/4624 ◽  
2014 ◽  
Vol 21 (4) ◽  
Author(s):  
Ira M. Gessel ◽  
Yan Zhuang

We find the exponential generating function for permutations with all valleys even and all peaks odd, and use it to determine the asymptotics for its coefficients, answering a question posed by Liviu Nicolaescu. The generating function can be expressed as the reciprocal of a sum involving Euler numbers: \[\left(1-E_1x+E_{3}\frac{x^{3}}{3!}-E_{4}\frac{x^{4}}{4!}+E_{6}\frac{x^{6}}{6!}-E_{7}\frac{x^{7}}{7!}+\cdots\right)^{-1},\tag{$*$}\]where $\sum_{n=0}^\infty E_n x^n\!/n! = \sec x + \tan x$. We give two proofs of this formula. The first uses a system of differential equations whose solution gives the generating function\begin{equation*}\frac{3\sin\left(\frac{1}{2}x\right)+3\cosh\left(\frac{1}{2}\sqrt{3}x\right)}{3\cos\left(\frac{1}{2}x\right)-\sqrt{3}\sinh\left(\frac{1}{2}\sqrt{3}x\right)},\end{equation*} which we then show is equal to $(*)$. The second proof derives $(*)$ directly from general permutation enumeration techniques, using noncommutative symmetric functions. The generating function $(*)$ is an "alternating" analogue of David and Barton's generating function \[\left(1-x+\frac{x^{3}}{3!}-\frac{x^{4}}{4!}+\frac{x^{6}}{6!}-\frac{x^{7}}{7!}+\cdots\right)^{-1},\]for permutations with no increasing runs of length 3 or more. Our general results give further alternating analogues of permutation enumeration formulas, including results of Chebikin and Remmel.


2014 ◽  
Vol DMTCS Proceedings vol. AT,... (Proceedings) ◽  
Author(s):  
Jia Huang

International audience We define an action of the $0$-Hecke algebra of type A on the Stanley-Reisner ring of the Boolean algebra. By studying this action we obtain a family of multivariate noncommutative symmetric functions, which specialize to the noncommutative Hall-Littlewood symmetric functions and their $(q,t)$-analogues introduced by Bergeron and Zabrocki. We also obtain multivariate quasisymmetric function identities, which specialize to a result of Garsia and Gessel on the generating function of the joint distribution of five permutation statistics. Nous définissons une action de l’algèbre de Hecke-$0$ de type A sur l’anneau Stanley-Reisner de l’algèbre de Boole. En étudiant cette action, on obtient une famille de fonctions symétriques non commutatives multivariées, qui se spécialisent pour les non commutatives fonctions de Hall-Littlewood symétriques et leur $(q,t)$-analogues introduits par Bergeron et Zabrocki. Nous obtenons également des identités de fonction quasisymmetrique multivariées, qui se spécialisent à la suite de Garsia et Gessel sur la fonction génératrice de la distribution conjointe de cinq statistiques de permutation.


2013 ◽  
Vol 23 (04) ◽  
pp. 779-801 ◽  
Author(s):  
JEAN-CHRISTOPHE NOVELLI ◽  
LENNY TEVLIN ◽  
JEAN-YVES THIBON

We investigate the connections between various noncommutative analogues of Hall–Littlewood and Macdonald polynomials, and define some new families of noncommutative symmetric functions depending on two sequences of parameters.


2012 ◽  
Vol 37 (4) ◽  
pp. 621-642 ◽  
Author(s):  
Alain Lascoux ◽  
Jean-Christophe Novelli ◽  
Jean-Yves Thibon

2012 ◽  
Vol 48 (3) ◽  
pp. 528-534 ◽  
Author(s):  
Jean-Christophe Novelli ◽  
Jean-Yves Thibon

2012 ◽  
Vol DMTCS Proceedings vol. AR,... (Proceedings) ◽  
Author(s):  
Alain Lascoux ◽  
Jean-Christophe Novelli ◽  
Jean-Yves Thibon

International audience We define new families of noncommutative symmetric functions and quasi-symmetric functions depending on two matrices of parameters, and more generally on parameters associated with paths in a binary tree. Appropriate specializations of both matrices then give back the two-vector families of Hivert, Lascoux, and Thibon and the noncommutative Macdonald functions of Bergeron and Zabrocki. Nous définissons de nouvelles familles de fonctions symétriques non-commutatives et de fonctions quasi-symétriques, dépendant de deux matrices de paramètres, et plus généralement, de paramètres associés à des chemins dans un arbre binaire. Pour des spécialisations appropriées, on retrouve les familles à deux vecteurs de Hivert-Lascoux-Thibon et les fonctions de Macdonald non-commutatives de Bergeron-Zabrocki.


2011 ◽  
Vol 15 (4) ◽  
pp. 655-673 ◽  
Author(s):  
Gérard H. E. Duchamp ◽  
Florent Hivert ◽  
Jean-Christophe Novelli ◽  
Jean-Yves Thibon

Sign in / Sign up

Export Citation Format

Share Document