scholarly journals Powers of the Vandermonde determinant, Schur functions, and the dimension game

2011 ◽  
Vol DMTCS Proceedings vol. AO,... (Proceedings) ◽  
Author(s):  
Cristina Ballantine

International audience Since every even power of the Vandermonde determinant is a symmetric polynomial, we want to understand its decomposition in terms of the basis of Schur functions. We investigate several combinatorial properties of the coefficients in the decomposition. In particular, I will give a recursive approach for computing the coefficient of the Schur function $s_μ$ in the decomposition of an even power of the Vandermonde determinant in $n+1$ variables in terms of the coefficient of the Schur function $s_λ$ in the decomposition of the same even power of the Vandermonde determinant in $n$ variables if the Young diagram of $μ$ is obtained from the Young diagram of $λ$ by adding a tetris type shape to the top or to the left. Comme toute puissance paire du déterminant de Vandermonde est un polynôme symétrique, nous voulons comprendre sa décomposition dans la base des fonctions de Schur. Nous allons étudier plusieurs propriétés combinatoires des coefficients de la décomposition. En particulier, nous allons donner une approche récursive pour le calcul du coefficient de la fonction de Schur $s_μ$ dans la décomposition d'une puissance paire du déterminant de Vandermonde en $n+1$ variables, en fonction du coefficient de la fonction de Schur $s_λ$ dans la décomposition de la même puissance paire du déterminant de Vandermonde en $n$ variables, lorsque le diagramme de Young de $μ$ est obtenu à partir du diagramme de Young de $λ$ par l'addition d'une forme de type tetris vers le haut ou vers la gauche.

10.37236/7387 ◽  
2018 ◽  
Vol 25 (3) ◽  
Author(s):  
Anna Stokke

The classical Pieri formula gives a combinatorial rule for decomposing the product of a Schur function and a complete homogeneous symmetric polynomial as a linear combination of Schur functions with integer coefficients. We give a Pieri rule for describing the product of an orthosymplectic character and an orthosymplectic character arising from a one-row partition. We establish that the orthosymplectic Pieri rule coincides with Sundaram's Pieri rule for symplectic characters and that orthosymplectic characters and symplectic characters obey the same product rule. 


2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Radmila Sazdanović ◽  
Martha Yip

International audience The Stanley chromatic polynomial of a graph $G$ is a symmetric function generalization of the chromatic polynomial, and has interesting combinatorial properties. We apply the ideas of Khovanov homology to construct a homology $H$<sub>*</sub>($G$) of graded $S_n$-modules, whose graded Frobenius series $Frob_G(q,t)$ reduces to the chromatic symmetric function at $q=t=1$. We also obtain analogues of several familiar properties of the chromatic symmetric polynomials in terms of homology. Le polynôme chromatique symétrique d’un graphe $G$ est une généralisation par une fonction symétrique du polynôme chromatique, et possède des propriétés combinatoires intéressantes. Nous appliquons les techniques de l’homologie de Khovanov pour construire une homologie $H$<sub>*</sub>($G$) de modules gradués $S_n$, dont la série bigraduée de Frobeniusse $Frob_G(q,t)$ réduit au polynôme chromatique symétrique à $q=t=1$. Nous obtenons également des analogies pour plusieurs propriétés connues des polynômes chromatiques en termes d’homologie.


2008 ◽  
Vol DMTCS Proceedings vol. AJ,... (Proceedings) ◽  
Author(s):  
James Haglund ◽  
Sarah Mason ◽  
Kurt Luoto ◽  
Steph van Willigenburg

International audience We introduce a new basis for the algebra of quasisymmetric functions that naturally partitions Schur functions, called quasisymmetric Schur functions. We describe their expansion in terms of fundamental quasisymmetric functions and determine when a quasisymmetric Schur function is equal to a fundamental quasisymmetric function. We conclude by describing a Pieri rule for quasisymmetric Schur functions that naturally generalizes the Pieri rule for Schur functions. Nous étudions une nouvelle base des fonctions quasisymétriques, les fonctions de quasiSchur. Ces fonctions sont obtenues en spécialisant les fonctions de Macdonald dissymétrique. Nous décrivons les compositions que donne une simple fonction quasisymétriques. Nous décrivons aussi une règle par certaines fonctions de Schur.


10.37236/2248 ◽  
2012 ◽  
Vol 19 (4) ◽  
Author(s):  
Tom Denton

We develop a new perspective on the unique maximal decomposition of an arbitrary affine permutation into a product of cyclically decreasing elements, implicit in work of Thomas Lam.  This decomposition is closely related to the affine code, which generalizes the $k$-bounded partition associated to Grassmannian elements.  We also prove that the affine code readily encodes a number of basic combinatorial properties of an affine permutation.  As an application, we prove a new special case of the Littlewood-Richardson Rule for $k$-Schur functions, using the canonical decomposition to control for which permutations appear in the expansion of the $k$-Schur function in noncommuting variables over the affine nil-Coxeter algebra.


2011 ◽  
Vol DMTCS Proceedings vol. AO,... (Proceedings) ◽  
Author(s):  
Jason Bandlow ◽  
Anne Schilling ◽  
Mike Zabrocki

International audience We prove a Murnaghan–Nakayama rule for k-Schur functions of Lapointe and Morse. That is, we give an explicit formula for the expansion of the product of a power sum symmetric function and a k-Schur function in terms of k-Schur functions. This is proved using the noncommutative k-Schur functions in terms of the nilCoxeter algebra introduced by Lam and the affine analogue of noncommutative symmetric functions of Fomin and Greene. Nous prouvons une règle de Murnaghan-Nakayama pour les fonctions de k-Schur de Lapointe et Morse, c'est-à-dire que nous donnons une formule explicite pour le développement du produit d'une fonction symétrique "somme de puissances'' et d'une fonction de k-Schur en termes de fonctions k-Schur. Ceci est prouvé en utilisant les fonctions non commutatives k-Schur en termes d'algèbre nilCoxeter introduite par Lam et l'analogue affine des fonctions symétriques non commutatives de Fomin et Greene.


2011 ◽  
Vol DMTCS Proceedings vol. AO,... (Proceedings) ◽  
Author(s):  
Sarah K Mason ◽  
Jeffrey Remmel

International audience Haglund, Luoto, Mason, and van Willigenburg introduced a basis for quasisymmetric functions called the $\textit{quasisymmetric Schur function basis}$ which are generated combinatorially through fillings of composition diagrams in much the same way as Schur functions are generated through reverse column-strict tableaux. We introduce a new basis for quasisymmetric functions called the $\textit{row-strict quasisymmetric Schur function basis}$ which are generated combinatorially through fillings of composition diagrams in much the same way as Schur functions are generated through row-strict tableaux. We describe the relationship between this new basis and other known bases for quasisymmetric functions, as well as its relationship to Schur polynomials. We obtain a refinement of the omega transform operator as a result of these relationships. Haglund, Luoto, Mason, et van Willigenburg ont introduit une base pour les fonctions quasi-symétriques appelée $\textit{base des fonctions de Schur quasi-symétriques}$, qui sont construites en remplissant des diagrammes de compositions, d'une manière très semblable à la construction des fonctions de Schur à partir des tableaux "column-strict'' (ordre strict sur les colonnes). Nous introduisons une nouvelle base pour les fonctions quasi-symétriques appelée $\textit{base des fonctions de Schur quasi-symétriques "row-strict''}$, qui sont construites en remplissant des diagrammes de compositions, d'une manière très semblable à la construction des fonctions de Schur à partir des tableaux "row-strict'' (ordre strict sur les lignes). Nous décrivons la relation entre cette nouvelle base et d'autres bases connues pour les fonctions quasi-symétriques, ainsi que ses relations avec les polynômes de Schur. Nous obtenons un raffinement de l'opérateur oméga comme conséquence de ces relations.


2012 ◽  
Vol 55 (3) ◽  
pp. 462-473
Author(s):  
Peter S. Campbell ◽  
Anna Stokke

AbstractBy considering the specialisation sλ(1, q, q2, … , qn–1) of the Schur function, Stanley was able to describe a formula for the number of semistandard Young tableaux of shape λ in terms of the contents and hook lengths of the boxes in the Young diagram. Using specialisations of symplectic and orthogonal Schur functions, we derive corresponding formulae, first given by El Samra and King, for the number of semistandard symplectic and orthogonal λ-tableaux.


2013 ◽  
Vol DMTCS Proceedings vol. AS,... (Proceedings) ◽  
Author(s):  
Yeonkyung Kim

International audience In this article, we show how the compositional refinement of the ``Shuffle Conjecture'' due to Jim Haglund, Jennifer Morse, and Mike Zabrocki can be used to express the image of a Schur function under the Bergeron-Garsia Nabla operator as a weighted sum of a suitable collection of ``Parking Functions.'' The validity of these expressions is, of course, going to be conjectural until the compositional refinement of the Shuffle Conjecture is established.


2010 ◽  
Vol DMTCS Proceedings vol. AN,... (Proceedings) ◽  
Author(s):  
Sami H. Assaf ◽  
Peter R. W. McNamara

International audience The Pieri rule expresses the product of a Schur function and a single row Schur function in terms of Schur functions. We extend the classical Pieri rule by expressing the product of a skew Schur function and a single row Schur function in terms of skew Schur functions. Like the classical rule, our rule involves simple additions of boxes to the original skew shape. Our proof is purely combinatorial and extends the combinatorial proof of the classical case. La règle de Pieri exprime le produit d'une fonction de Schur et de la fonction de Schur d'une seule ligne en termes de fonctions de Schur. Nous étendons la règle classique de Pieri en exprimant le produit d'un fonction gauche de Schur et de la fonction de Schur d'une ligne en termes de fonctions gauches de Schur. Comme la règle classique, notre règle implique l'ajout de cases à la forme gauche initiale. Notre preuve est purement combinatoire et étend celle du cas classique.


2011 ◽  
Vol DMTCS Proceedings vol. AO,... (Proceedings) ◽  
Author(s):  
Jeffrey Ferreira

International audience We establish several properties of an algorithm defined by Mason and Remmel (2010) which inserts a positive integer into a row-strict composition tableau. These properties lead to a Littlewood-Richardson type rule for expanding the product of a row-strict quasisymmetric Schur function and a symmetric Schur function in terms of row-strict quasisymmetric Schur functions. Nous établissons plusieurs propriétés d'un algorithme défini par Mason et Remmel (2010), qui insère un entier positif dans un tableau dont la forme est une composition, avec ordre strict sur les lignes (row-strict). Ces propriétés conduisent à une règle de type Littlewood-Richardson pour étendre le produit d'une fonction de Schur quasi-symétrique "row-strict'' et d'une fonction de Schur symétrique en termes de fonctions de Schur quasi-symétriques "row-strict''.


Sign in / Sign up

Export Citation Format

Share Document