scholarly journals Bijective Proofs of Partition Identities of MacMahon, Andrews, and Subbarao

2014 ◽  
Vol DMTCS Proceedings vol. AT,... (Proceedings) ◽  
Author(s):  
Shishuo Fu ◽  
James Sellers

International audience We revisit a classic partition theorem due to MacMahon that relates partitions with all parts repeated at least once and partitions with parts congruent to $2,3,4,6 \pmod{6}$, together with a generalization by Andrews and two others by Subbarao. Then we develop a unified bijective proof for all four theorems involved, and obtain a natural further generalization as a result. Nous revisitons un théorème de partitions d'entiers dû à MacMahon, qui relie les partitions dont chaque part est répétée au moins une fois et celles dont les parts sont congrues à $2, 3, 4, 6 \pmod{6}$, ainsi qu'une généralisation par Andrews et deux autres par Subbarao. Ensuite nous construisons unepreuve bijective unifiée pour tous les quatre théorèmes ci-dessus, et obtenons de plus une généralisation naturelle.

10.37236/3907 ◽  
2014 ◽  
Vol 21 (2) ◽  
Author(s):  
Shishuo Fu ◽  
James Allen Sellers

We revisit a classic partition theorem due to MacMahon that relates partitions with all parts repeated at least once and partitions with parts congruent to $2,3,4,6 \pmod 6$, together with a generalization by Andrews and two others by Subbarao. Then we develop a unified bijective proof for all four theorems involved, and obtain a natural further generalization as a result.


1997 ◽  
Vol Vol. 1 ◽  
Author(s):  
Jean-Christophe Novelli ◽  
Igor Pak ◽  
Alexander V. Stoyanovskii

International audience This paper presents a new proof of the hook-length formula, which computes the number of standard Young tableaux of a given shape. After recalling the basic definitions, we present two inverse algorithms giving the desired bijection. The next part of the paper presents the proof of the bijectivity of our construction. The paper concludes with some examples.


2020 ◽  
Vol DMTCS Proceedings, 28th... ◽  
Author(s):  
Sara Billey ◽  
Alexander Holroyd ◽  
Benjamin Young

International audience We describe a bijective proof of Macdonald's reduced word identity using pipe dreams and Little's bumping algorithm. The proof extends to a principal specialization of the identity due to Fomin and Stanley. Our bijective tools also allow us to address a problem posed by Fomin and Kirillov from 1997, using work of Wachs, Lenart and Serrano- Stump.


2010 ◽  
Vol DMTCS Proceedings vol. AN,... (Proceedings) ◽  
Author(s):  
Valentin Féray ◽  
Ekaterina A. Vassilieva

International audience We look at the number of permutations $\beta$ of $[N]$ with $m$ cycles such that $(1 2 \ldots N) \beta^{-1}$ is a long cycle. These numbers appear as coefficients of linear monomials in Kerov's and Stanley's character polynomials. D. Zagier, using algebraic methods, found an unexpected connection with Stirling numbers of size $N+1$. We present the first combinatorial proof of his result, introducing a new bijection between partitioned maps and thorn trees. Moreover, we obtain a finer result, which takes the type of the permutations into account. Nous étudions le nombre de permutations $\beta$ de $[N]$ avec $m$ cycles telles que $(1 2 \ldots N) \beta^{-1}$ a un seul cycle. Ces nombres apparaissent en tant que coefficients des monômes linéaires des polynômes de Kerov et de Stanley. À l'aide de méthodes algébriques, D. Zagier a trouvé une connexion inattendue avec les nombres de Stirling de taille $N+1$. Nous présentons ici la première preuve combinatoire de son résultat, en introduisant une nouvelle bijection entre des cartes partitionnées et des arbres épineux. De plus, nous obtenons un résultat plus fin, prenant en compte le type des permutations.


2008 ◽  
Vol DMTCS Proceedings vol. AJ,... (Proceedings) ◽  
Author(s):  
Patricia Muldoon ◽  
Margaret A. Readdy

International audience We study enumerative and homological properties of the Rees product of the cubical lattice with the chain. We give several explicit formulas for the Möbius function. The last formula is expressed in terms of the permanent of a matrix and is given by a bijective proof. Nous étudions des propriétés énumératives et homologiques du produit de Rees du treillis cubique avec la chaîne. Nous donnons plusieurs formules explicites de la fonction de Möbius de ce poset. La dernière de ces formules est exprimée en termes du permanent d’une matrice et le résultat est donné par une preuve bijective.


2012 ◽  
Vol DMTCS Proceedings vol. AR,... (Proceedings) ◽  
Author(s):  
Guillaume Chapuy ◽  
Valentin Feray ◽  
Eric Fusy

International audience We consider unicellular maps, or polygon gluings, of fixed genus. In FPSAC '09 the first author gave a recursive bijection transforming unicellular maps into trees, explaining the presence of Catalan numbers in counting formulas for these objects. In this paper, we give another bijection that explicitly describes the ``recursive part'' of the first bijection. As a result we obtain a very simple description of unicellular maps as pairs made by a plane tree and a permutation-like structure. All the previously known formulas follow as an immediate corollary or easy exercise, thus giving a bijective proof for each of them, in a unified way. For some of these formulas, this is the first bijective proof, e.g. the Harer-Zagier recurrence formula, or the Lehman-Walsh/Goupil-Schaeffer formulas. Thanks to previous work of the second author this also leads us to a new expression for Stanley character polynomials, which evaluate irreducible characters of the symmetric group. Nous considèrons des cartes orientèes à une face de genre fixé. à SFCA'09 le premier auteur a introduit une bijection rècursive envoyant une carte unicellulaire vers un arbre, ce qui permet d'obtenir des formules ènumèratives pour les cartes à une face (et en particulier la prèsence des nombres de Catalan). Dans l'article ici prèsent, et en nous appuyant sur la bijection ci-dessus, nous obtenons une incarnation très simple des cartes à une face comme des paires formèes d'un arbre plan et d'une permutation d'un certain type. Toutes les formules prècèdemment connues dècoulent aisèment de cette nouvelle incarnation, donnant des preuves bijectives dans un cadre unifié. Pour certaines de ces formules, telles que la rècurrence de Harer-Zagier ou les formules de Lehman-Walsh/Goupil-Schaeffer, nous obtenons la première preuve bijective connue. Par ailleurs, en combinant notre approche avec des travaux du second auteur, nous obtenons une nouvelle expression pour les polynômes de Stanley qui donnent certaines èvaluations des caractères du groupe symètrique.


2009 ◽  
Vol DMTCS Proceedings vol. AK,... (Proceedings) ◽  
Author(s):  
Olga Azenhas ◽  
Alessandro Conflitti ◽  
Ricardo Mamede

International audience Benkart, Sottile, and Stroomer have completely characterized by Knuth and dual Knuth equivalence a bijective proof of the Littlewood―Richardson coefficient conjugation symmetry, i.e. $c_{\mu, \nu}^{\lambda} =c_{\mu^t,\nu^t}^{\lambda ^t}$. Tableau―switching provides an algorithm to produce such a bijective proof. Fulton has shown that the White and the Hanlon―Sundaram maps are versions of that bijection. In this paper one exhibits explicitly the Yamanouchi word produced by that conjugation symmetry map which on its turn leads to a new and very natural version of the same map already considered independently. A consequence of this latter construction is that using notions of Relative Computational Complexity we are allowed to show that this conjugation symmetry map is linear time reducible to the Schützenberger involution and reciprocally. Thus the Benkart―Sottile―Stroomer conjugation symmetry map with the two mentioned versions, the three versions of the commutative symmetry map, and Schützenberger involution, are linear time reducible to each other. This answers a question posed by Pak and Vallejo. Benkart, Sottile, et Stroomer ont complètement caractérisé par équivalence et équivalence duelle à Knuth une preuve bijective de la symétrie de la conjugaison des coefficients de Littlewood―Richardson, i.e. $c_{\mu, \nu}^{\lambda} =c_{\mu^t,\nu^t}^{\lambda ^t}$. Le tableau-switching donne un algorithme par produire une telle preuve bijective. Fulton a montré que les bijections de White et de Hanlon et Sundaram sont des versions de cette bijection. Dans ce papier on exhibe explicitement le mot de Yamanouchi produit par cette bijection de conjugaison lequel à son tour conduit à une nouvelle version très naturelle de la même bijection déjà considérée indépendamment. Une conséquence de cette dernière construction c'est qu'en utilisant des notions de Complexité Computationnelle Relative nous pouvons montrer que cette bijection de symétrie de la conjugaison est linéairement réductible à l'involution de Schützenberger et réciproquement. Ainsi la bijection de symétrie de la conjugaison de Benkart, Sottile et Stroomer avec les deux versions mentionnées, tout comme les trois versions de la bijection de la commutativité, et l'involution de Schützenberger sont linéairement réductibles les unes aux autres. Ça répond à une question posée par Pak et Vallejo.


2020 ◽  
Vol DMTCS Proceedings, 28th... ◽  
Author(s):  
Olya Mandelshtam ◽  
Xavier Viennot

International audience In this paper, we introduce therhombic alternative tableaux, whose weight generating functions providecombinatorial formulae to compute the steady state probabilities of the two-species ASEP. In the ASEP, there aretwo species of particles, oneheavyand onelight, on a one-dimensional finite lattice with open boundaries, and theparametersα,β, andqdescribe the hopping probabilities. The rhombic alternative tableaux are enumerated by theLah numbers, which also enumerate certainassembl ́ees of permutations. We describe a bijection between the rhombicalternative tableaux and these assembl ́ees. We also provide an insertion algorithm that gives a weight generatingfunction for the assemb ́ees. Combined, these results give a bijective proof for the weight generating function for therhombic alternative tableaux.


2014 ◽  
Vol DMTCS Proceedings vol. AT,... (Proceedings) ◽  
Author(s):  
Robin Sulzgruber

International audience The number of standard Young tableaux of a fixed shape is famously given by the hook-length formula due to Frame, Robinson and Thrall. A bijective proof of Novelli, Pak and Stoyanovskii relies on a sorting algorithm akin to jeu-de-taquin which transforms an arbitrary filling of a partition into a standard Young tableau by exchanging adjacent entries. Recently, Krattenthaler and Müller defined the complexity of this algorithm as the average number of performed exchanges, and Neumann and the author proved it fulfils some nice symmetry properties. In this paper we recall and extend the previous results and provide new bijective proofs.


2012 ◽  
Vol DMTCS Proceedings vol. AR,... (Proceedings) ◽  
Author(s):  
Ilse Fischer ◽  
Lukas Riegler

International audience The number of Monotone Triangles with bottom row $k_1 < k_2 < ⋯< k_n$ is given by a polynomial $\alpha (n; k_1,\ldots,k_n)$ in $n$ variables. The evaluation of this polynomial at weakly decreasing sequences $k_1 ≥k_2 ≥⋯≥k_n $turns out to be interpretable as signed enumeration of new combinatorial objects called Decreasing Monotone Triangles. There exist surprising connections between the two classes of objects – in particular it is shown that $\alpha (n;1,2,\ldots,n) = \alpha (2n; n,n,n-1,n-1,\ldots,1,1)$. In perfect analogy to the correspondence between Monotone Triangles and Alternating Sign Matrices, the set of Decreasing Monotone Triangles with bottom row $(n,n,n-1,n-1,\ldots,1,1)$ is in one-to-one correspondence with a certain set of ASM-like matrices, which also play an important role in proving the claimed identity algebraically. Finding a bijective proof remains an open problem. Le nombre de Triangles Monotones ayant pour dernière ligne $k_1 < k_2 < ⋯< k_n$ est donné par un polynôme $\alpha (n; k_1,\ldots,k_n)$ en $n$ variables. Il se trouve que les valeurs de ce polynôme en les suites décroissantes $k_1 ≥k_2 ≥⋯≥k_n$ peuvent s'interpréter comme l'énumération signée de nouveaux objets appelés Triangles Monotones Décroissants. Il existe des liens surprenants entre ces deux classes d'objets – en particulier on prouvera l'identité $\alpha (n;1,2,\ldots,n) = \alpha (2n; n,n,n-1,n-1,\ldots,1,1)$. En parfaite analogie avec la correspondance entre Triangles Monotones et Matrices à Signe Alternant, l'ensemble des Triangles Monotones Décroissants ayant pour dernière ligne $(n,n,n-1,n-1,\ldots,1,1)$ est en correspondance biunivoque avec un certain ensemble de matrices similaires aux MSAs, ce qui joue un rôle important dans la preuve algébrique de l'identité précédente. C'est un problème ouvert que d'en donner une preuve bijective.


Sign in / Sign up

Export Citation Format

Share Document