scholarly journals Genus one partitions

2014 ◽  
Vol DMTCS Proceedings vol. AT,... (Proceedings) ◽  
Author(s):  
Robert Cori ◽  
Gábor Hetyei

International audience We prove the conjecture by M. Yip stating that counting genus one partitions by the number of their elements and parts yields, up to a shift of indices, the same array of numbers as counting genus one rooted hypermonopoles. Our proof involves representing each genus one permutation by a four-colored noncrossing partition. This representation may be selected in a unique way for permutations containing no trivial cycles. The conclusion follows from a general generating function formula that holds for any class of permutations that is closed under the removal and reinsertion of trivial cycles. Our method also provides another way to count rooted hypermonopoles of genus one, and puts the spotlight on a class of genus one permutations that is invariant under an obvious extension of the Kreweras duality map to genus one permutations. Nous démontrons la conjecture de M. Yip affirmant que compter les partitions de genre un par le nombre de leurs éléments et leurs parties donne, à un décalage d’indices près, la même gamme de nombres que celle qui résulte en comptant les hypermonopoles de genre un. Notre preuve utilise une représentation de chaque permutation de genre un par une partition non-croisée quatricolorée. Cette représentation peut être choisi d’une manière unique pour les permutations qui ne contiennent pas des cycles triviaux. La conclusion suit d’une formule des fonctions génératrices générale qui vaut pour toute classe de permutations qui est fermé sous l’enlèvement et la réinsertion des cycles triviaux. Notre méthode offre une autre manière de compter les hypermonopoles enracinés de genre un, et dirige l’attention sur une extension évidente de la dualité de Kreweras sur les permutations de genre un.


2014 ◽  
Vol Vol. 16 no. 1 (Combinatorics) ◽  
Author(s):  
Toufik Mansour ◽  
Mark Shattuck ◽  
Mark Wilson

Combinatorics International audience A composition is a sequence of positive integers, called parts, having a fixed sum. By an m-congruence succession, we will mean a pair of adjacent parts x and y within a composition such that x=y(modm). Here, we consider the problem of counting the compositions of size n according to the number of m-congruence successions, extending recent results concerning successions on subsets and permutations. A general formula is obtained, which reduces in the limiting case to the known generating function formula for the number of Carlitz compositions. Special attention is paid to the case m=2, where further enumerative results may be obtained by means of combinatorial arguments. Finally, an asymptotic estimate is provided for the number of compositions of size n having no m-congruence successions.



2007 ◽  
Vol DMTCS Proceedings vol. AH,... (Proceedings) ◽  
Author(s):  
Frédérique Bassino ◽  
Julien Clément ◽  
J. Fayolle ◽  
P. Nicodème

International audience In this paper, we give the multivariate generating function counting texts according to their length and to the number of occurrences of words from a finite set. The application of the inclusion-exclusion principle to word counting due to Goulden and Jackson (1979, 1983) is used to derive the result. Unlike some other techniques which suppose that the set of words is reduced (<i>i..e.</i>, where no two words are factor of one another), the finite set can be chosen arbitrarily. Noonan and Zeilberger (1999) already provided a MAPLE package treating the non-reduced case, without giving an expression of the generating function or a detailed proof. We give a complete proof validating the use of the inclusion-exclusion principle and compare the complexity of the method proposed here with the one using automata for solving the problem.



2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Lenny Tevlin

International audience This paper contains two results. First, I propose a $q$-generalization of a certain sequence of positive integers, related to Catalan numbers, introduced by Zeilberger, see Lassalle (2010). These $q$-integers are palindromic polynomials in $q$ with positive integer coefficients. The positivity depends on the positivity of a certain difference of products of $q$-binomial coefficients.To this end, I introduce a new inversion/major statistics on lattice walks. The difference in $q$-binomial coefficients is then seen as a generating function of weighted walks that remain in the upper half-plan. Cet document contient deux résultats. Tout d’abord, je vous propose un $q$-generalization d’une certaine séquence de nombres entiers positifs, liés à nombres de Catalan, introduites par Zeilberger (Lassalle, 2010). Ces $q$-integers sont des polynômes palindromiques à $q$ à coefficients entiers positifs. La positivité dépend de la positivité d’une certaine différence de produits de $q$-coefficients binomial.Pour ce faire, je vous présente une nouvelle inversion/major index sur les chemins du réseau. La différence de $q$-binomial coefficients est alors considérée comme une fonction de génération de trajets pondérés qui restent dans le demi-plan supérieur.



2020 ◽  
Vol DMTCS Proceedings, 28th... ◽  
Author(s):  
Philippe Biane ◽  
Matthieu Josuat-Vergès

International audience It is known that the number of minimal factorizations of the long cycle in the symmetric group into a product of k cycles of given lengths has a very simple formula: it is nk−1 where n is the rank of the underlying symmetric group and k is the number of factors. In particular, this is nn−2 for transposition factorizations. The goal of this work is to prove a multivariate generalization of this result. As a byproduct, we get a multivariate analog of Postnikov's hook length formula for trees, and a refined enumeration of final chains of noncrossing partitions.



2010 ◽  
Vol DMTCS Proceedings vol. AN,... (Proceedings) ◽  
Author(s):  
Sergey Kitaev ◽  
Jeffrey Remmel

International audience A poset is said to be (2+2)-free if it does not contain an induced subposet that is isomorphic to 2+2, the union of two disjoint 2-element chains. In a recent paper, Bousquet-Mélou et al. found, using so called ascent sequences, the generating function for the number of (2+2)-free posets: $P(t)=∑_n≥ 0 ∏_i=1^n ( 1-(1-t)^i)$. We extend this result by finding the generating function for (2+2)-free posets when four statistics are taken into account, one of which is the number of minimal elements in a poset. We also show that in a special case when only minimal elements are of interest, our rather involved generating function can be rewritten in the form $P(t,z)=∑_n,k ≥0 p_n,k t^n z^k = 1+ ∑_n ≥0\frac{zt}{(1-zt)^n+1}∏_i=1^n (1-(1-t)^i)$ where $p_n,k$ equals the number of (2+2)-free posets of size $n$ with $k$ minimal elements. Un poset sera dit (2+2)-libre s'il ne contient aucun sous-poset isomorphe à 2+2, l'union disjointe de deux chaînes à deux éléments. Dans un article récent, Bousquet-Mélou et al. ont trouvé, à l'aide de "suites de montées'', la fonction génératrice des nombres de posets (2+2)-libres: c'est $P(t)=∑_n≥ 0 ∏_i=1^n ( 1-(1-t)^i)$. Nous étendons ce résultat en trouvant la fonction génératrice des posets (\textrm2+2)-libres rendant compte de quatre statistiques, dont le nombre d'éléments minimaux du poset. Nous montrons aussi que lorsqu'on ne s'intéresse qu'au nombre d'éléments minimaux, notre fonction génératrice assez compliquée peut être simplifiée en$P(t,z)=∑_n,k ≥0 p_n,k t^n z^k = 1+ ∑_n ≥0\frac{zt}{(1-zt)^n+1}∏_i=1^n (1-(1-t)^i)$, où $p_n,k$ est le nombre de posets (2+2)-libres de taille $n$ avec $k$ éléments minimaux.



2021 ◽  
Vol Volume 43 - Special... ◽  
Author(s):  
Dandan Chen ◽  
Rong Chen ◽  
Frank Garvan

International audience It is well known that Ramanujan conjectured congruences modulo powers of 5, 7 and 11 for the partition function. These were subsequently proved by Watson (1938) and Atkin (1967). In 2009 Choi, Kang, and Lovejoy proved congruences modulo powers of 5 for the crank parity function. The generating function for the rank parity function is f (q), which is the first example of a mock theta function that Ramanujan mentioned in his last letter to Hardy. We prove congruences modulo powers of 5 for the rank parity function.



2012 ◽  
Vol DMTCS Proceedings vol. AR,... (Proceedings) ◽  
Author(s):  
Marie Albenque ◽  
Jérémie Bouttier

International audience We consider the problem of enumerating planar constellations with two points at a prescribed distance. Our approach relies on a combinatorial correspondence between this family of constellations and the simpler family of rooted constellations, which we may formulate algebraically in terms of multicontinued fractions and generalized Hankel determinants. As an application, we provide a combinatorial derivation of the generating function of Eulerian triangulations with two points at a prescribed distance. Nous considérons le problème du comptage des constellations planaires à deux points marqués à distance donnée. Notre approche repose sur une correspondance combinatoire entre cette famille de constellations et celle, plus simple, des constellations enracinées. La correspondance peut être reformulée algébriquement en termes de fractions multicontinues et de déterminants de Hankel généralisés. Comme application, nous obtenons par une preuve combinatoire la série génératrice des triangulations eulériennes à deux points marqués à distance donnée.



2014 ◽  
Vol DMTCS Proceedings vol. AT,... (Proceedings) ◽  
Author(s):  
Michael Albert ◽  
Mireille Bousquet-Mélou

International audience At the end of the 1960s, Knuth characterised in terms of forbidden patterns the permutations that can be sorted using a stack. He also showed that they are in bijection with Dyck paths and thus counted by the Catalan numbers. Subsequently, Pratt and Tarjan asked about permutations that can be sorted using two stacks in parallel. This question is significantly harder, and the associated counting question has remained open for 40 years. We solve it by giving a pair of equations that characterise the generating function of such permutations. The first component of this system describes the generating function $Q(a,u)$ of square lattice loops confined to the positive quadrant, counted by the length and the number of North-West and East-South factors. Our analysis of the asymptotic number of sortable permutations relies at the moment on two intriguing conjectures dealing with this series. Given the recent activity on walks confined to cones, we believe them to be attractive $\textit{per se}$. We prove these conjectures for closed walks confined to the upper half plane, or not confined at all. Nous énumérons les permutations triables par deux piles en parallèle. Cette question était restée ouverte depuis les travaux de Knuth, Pratt et Tarjan dans les années 70. Notre solution consiste en une paire d’équations qui caractérisent la série génératrice. La première composante de ce système décrit la série $Q(a,u)$ des chemins fermés confinés dans le quart de plan positif, comptés selon leur longueur et le nombre de facteurs Nord-Ouest ou Est-Sud. Notre analyse du comportement asymptotique du nombre de permutations triables repose à ce stade sur deux conjectures remarquables portant sur $Q(a; u)$. Nous les prouvons pour les chemins fermés non confinés, ou confinés au demi-plan supérieur.



2010 ◽  
Vol DMTCS Proceedings vol. AN,... (Proceedings) ◽  
Author(s):  
Anatol N. Kirillov ◽  
Reiho Sakamoto

International audience We give an interpretation of the $t=1$ specialization of the modified Macdonald polynomial as a generating function of the energy statistics defined on the set of paths arising in the context of Box-Ball Systems (BBS-paths for short). We also introduce one parameter generalizations of the energy statistics on the set of BBS-paths which all, conjecturally, have the same distribution. Nous donnons une intérprétation de la spécialisation à $t=1$ du polynôme de Macdonald modifié comme fonction génératrice des statistiques d'énergie définies sur l'ensemble des chemins qui apparaissent dans la théorie des Systèmes BBS (BBS-chemins). Nous présentons également des généralisations à un paramètre de la statistique d'énergie sur les chemins BBS qui toutes, conjecturalement, ont la même distribution.



2010 ◽  
Vol DMTCS Proceedings vol. AN,... (Proceedings) ◽  
Author(s):  
T. K. Petersen ◽  
L. Serrano

International audience We show that the set $R(w_0)$ of reduced expressions for the longest element in the hyperoctahedral group exhibits the cyclic sieving phenomenon. More specifically, $R(w_0)$ possesses a natural cyclic action given by moving the first letter of a word to the end, and we show that the orbit structure of this action is encoded by the generating function for the major index on $R(w_0)$. Nous montrons que l'ensemble $R(w_0)$ des expressions réduites pour l'élément le plus long du groupe hyperoctaédral présente le phénomène cyclique de tamisage. Plus précisément, $R(w_0)$ possède une action naturelle cyclique donnée par le déplacement de la première lettre d'un mot vers la fin, et nous montrons que la structure d'orbite de cette action est codée par la fonction génératrice pour l'indice majeur sur $R(w_0)$.



Sign in / Sign up

Export Citation Format

Share Document