scholarly journals Congruence successions in compositions

2014 ◽  
Vol Vol. 16 no. 1 (Combinatorics) ◽  
Author(s):  
Toufik Mansour ◽  
Mark Shattuck ◽  
Mark Wilson

Combinatorics International audience A composition is a sequence of positive integers, called parts, having a fixed sum. By an m-congruence succession, we will mean a pair of adjacent parts x and y within a composition such that x=y(modm). Here, we consider the problem of counting the compositions of size n according to the number of m-congruence successions, extending recent results concerning successions on subsets and permutations. A general formula is obtained, which reduces in the limiting case to the known generating function formula for the number of Carlitz compositions. Special attention is paid to the case m=2, where further enumerative results may be obtained by means of combinatorial arguments. Finally, an asymptotic estimate is provided for the number of compositions of size n having no m-congruence successions.

2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Lenny Tevlin

International audience This paper contains two results. First, I propose a $q$-generalization of a certain sequence of positive integers, related to Catalan numbers, introduced by Zeilberger, see Lassalle (2010). These $q$-integers are palindromic polynomials in $q$ with positive integer coefficients. The positivity depends on the positivity of a certain difference of products of $q$-binomial coefficients.To this end, I introduce a new inversion/major statistics on lattice walks. The difference in $q$-binomial coefficients is then seen as a generating function of weighted walks that remain in the upper half-plan. Cet document contient deux résultats. Tout d’abord, je vous propose un $q$-generalization d’une certaine séquence de nombres entiers positifs, liés à nombres de Catalan, introduites par Zeilberger (Lassalle, 2010). Ces $q$-integers sont des polynômes palindromiques à $q$ à coefficients entiers positifs. La positivité dépend de la positivité d’une certaine différence de produits de $q$-coefficients binomial.Pour ce faire, je vous présente une nouvelle inversion/major index sur les chemins du réseau. La différence de $q$-binomial coefficients est alors considérée comme une fonction de génération de trajets pondérés qui restent dans le demi-plan supérieur.


2009 ◽  
Vol DMTCS Proceedings vol. AK,... (Proceedings) ◽  
Author(s):  
Sergey Kitaev ◽  
Jeffrey Liese ◽  
Jeffrey Remmel ◽  
Bruce Sagan

International audience Let $P$ be a partially ordered set and consider the free monoid $P^{\ast}$ of all words over $P$. If $w,w' \in P^{\ast}$ then $w'$ is a factor of $w$ if there are words $u,v$ with $w=uw'v$. Define generalized factor order on $P^{\ast}$ by letting $u \leq w$ if there is a factor $w'$ of $w$ having the same length as $u$ such that $u \leq w'$, where the comparison of $u$ and $w'$ is done componentwise using the partial order in $P$. One obtains ordinary factor order by insisting that $u=w'$ or, equivalently, by taking $P$ to be an antichain. Given $u \in P^{\ast}$, we prove that the language $\mathcal{F}(u)=\{w : w \geq u\}$ is accepted by a finite state automaton. If $P$ is finite then it follows that the generating function $F(u)=\sum_{w \geq u} w$ is rational. This is an analogue of a theorem of Björner and Sagan for generalized subword order. We also consider $P=\mathbb{P}$, the positive integers with the usual total order, so that $\mathbb{P}^{\ast}$ is the set of compositions. In this case one obtains a weight generating function $F(u;t,x)$ by substituting $tx^n$ each time $n \in \mathbb{P}$ appears in $F(u)$. We show that this generating function is also rational by using the transfer-matrix method. Words $u,v$ are said to be Wilf equivalent if $F(u;t,x)=F(v;t,x)$ and we can prove various Wilf equivalences combinatorially. Björner found a recursive formula for the Möbius function of ordinary factor order on $P^{\ast}$. It follows that one always has $\mu (u,w)=0, \pm 1$. Using the Pumping Lemma we show that the generating function $M(u)= \sum_{w \geq u} | \mu (u,w) | w$ can be irrational. Soit $P$ un ensemble partiellement ordonné. Nous considérons le monoïde libre $P^{\ast}$ de tous les mots utilisant $P$ comme alphabet. Si $w,w' \in P^{\ast}$, on dit que $w'$ est un facteur de $w$ s'il y a des mots $u,v$ avec $w=uw'v$. Nous définissons l'ordre facteur généralisé sur $P^{\ast}$ par: $u \leq w$ s'il y a un facteur $w'$ de $w$ ayant la même longueur que $u$ tel que $u \leq w'$, où la comparaison de $u$ avec $w'$ est faite lettre par lettre utilisant l'ordre en $P$. On obtient l'ordre facteur usuel si on insiste que $u=w'$ ou, ce qui est la même chose, en prenant $P$ comme antichaîne. Pour n'importe quel $u \in P^{\ast}$, nous démontrons que le langage $\mathcal{F}(u)=\{w : w \geq u\}$ est accepté par un automaton avec un nombre fini d'états. Si $P$ est fini, ça implique que la fonction génératrice $F(u)=\sum_{w \geq u} w$ est rationnelle. Björner et Sagan ont démontré le théorème analogue pour l'ordre où, en la définition au-dessus, $w'$ est un sous-mot de $w$. Nous considérons aussi le cas $P=\mathbb{P}$, les entiers positifs avec l'ordre usuel, donc $P^{\ast}$ est l'ensemble des compositions. En ce cas on obtient une fonction génératrice pondéré $F(u;t,x)$ en remplaçant $tx^n$ chaque fois on trouve $n \in \mathbb{P}$ en $F(u)$. Nous démontrons que cette fonction génératrice est aussi rationnelle en utilisant la Méthode Matrice de Tranfert. On dit que let mots $u,v$ sont Wilf-équivalents si $F(u;t,x)=F(v;t,x)$. Nous pouvons démontré quelques équivalences dans une manière combinatoire. Björner a trouvé une formule récursive pour la fonction Möbius de l'ordre facteur usuel sur $P^{\ast}$. Cette formule implique qu'on a toujours $\mu (u,w)=0, \pm 1$. En utilisant le Lemme de Pompage, nous démontrons que la fonction génératrice $M(u)= \sum_{w \geq u} | \mu (u,w) | w$ peut être irrationnelle.


2017 ◽  
Vol 27 (08) ◽  
pp. 1027-1040 ◽  
Author(s):  
Galina Deryabina ◽  
Alexei Krasilnikov

Let [Formula: see text] be a field of characteristic [Formula: see text] and let [Formula: see text] be a unital associative [Formula: see text]-algebra. Define a left-normed commutator [Formula: see text] [Formula: see text] recursively by [Formula: see text], [Formula: see text] [Formula: see text]. For [Formula: see text], let [Formula: see text] be the two-sided ideal in [Formula: see text] generated by all commutators [Formula: see text] ([Formula: see text]. Define [Formula: see text]. Let [Formula: see text] be integers such that [Formula: see text], [Formula: see text]. Let [Formula: see text] be positive integers such that [Formula: see text] of them are odd and [Formula: see text] of them are even. Let [Formula: see text]. The aim of the present note is to show that, for any positive integers [Formula: see text], in general, [Formula: see text]. It is known that if [Formula: see text] (that is, if at least one of [Formula: see text] is even), then [Formula: see text] for each [Formula: see text] so our result cannot be improved if [Formula: see text]. Let [Formula: see text]. Recently, Dangovski has proved that if [Formula: see text] are any positive integers then, in general, [Formula: see text]. Since [Formula: see text], Dangovski’s result is stronger than ours if [Formula: see text] and is weaker than ours if [Formula: see text]; if [Formula: see text], then [Formula: see text] so both results coincide. It is known that if [Formula: see text] (that is, if all [Formula: see text] are odd) then, for each [Formula: see text], [Formula: see text] so in this case Dangovski’s result cannot be improved.


2007 ◽  
Vol DMTCS Proceedings vol. AH,... (Proceedings) ◽  
Author(s):  
Frédérique Bassino ◽  
Julien Clément ◽  
J. Fayolle ◽  
P. Nicodème

International audience In this paper, we give the multivariate generating function counting texts according to their length and to the number of occurrences of words from a finite set. The application of the inclusion-exclusion principle to word counting due to Goulden and Jackson (1979, 1983) is used to derive the result. Unlike some other techniques which suppose that the set of words is reduced (<i>i..e.</i>, where no two words are factor of one another), the finite set can be chosen arbitrarily. Noonan and Zeilberger (1999) already provided a MAPLE package treating the non-reduced case, without giving an expression of the generating function or a detailed proof. We give a complete proof validating the use of the inclusion-exclusion principle and compare the complexity of the method proposed here with the one using automata for solving the problem.


2009 ◽  
Vol DMTCS Proceedings vol. AK,... (Proceedings) ◽  
Author(s):  
Tamás Lengyel

International audience Let $n$ and $k$ be positive integers, $d(k)$ and $\nu_2(k)$ denote the number of ones in the binary representation of $k$ and the highest power of two dividing $k$, respectively. De Wannemacker recently proved for the Stirling numbers of the second kind that $\nu_2(S(2^n,k))=d(k)-1, 1\leq k \leq 2^n$. Here we prove that $\nu_2(S(c2^n,k))=d(k)-1, 1\leq k \leq 2^n$, for any positive integer $c$. We improve and extend this statement in some special cases. For the difference, we obtain lower bounds on $\nu_2(S(c2^{n+1}+u,k)-S(c2^n+u,k))$ for any nonnegative integer $u$, make a conjecture on the exact order and, for $u=0$, prove part of it when $k \leq 6$, or $k \geq 5$ and $d(k) \leq 2$. The proofs rely on congruential identities for power series and polynomials related to the Stirling numbers and Bell polynomials, and some divisibility properties.


2019 ◽  
Vol 56 (01) ◽  
pp. 52-56
Author(s):  
Gérard Letac

AbstractFor 0 &lt; a &lt; 1, the Sibuya distribution sa is concentrated on the set ℕ+ of positive integers and is defined by the generating function $$\sum\nolimits_{n = 1}^\infty s_a (n)z^{{\kern 1pt} n} = 1 - (1 - z)^a$$. A distribution q on ℕ+ is called a progeny if there exists a branching process (Zn)n≥0 such that Z0 = 1, such that $$(Z_1 ) \le 1$$, and such that q is the distribution of $$\sum\nolimits_{n = 0}^\infty Z_n$$. this paper we prove that sa is a progeny if and only if $${\textstyle{1 \over 2}} \le a &#x003C; 1$$. The main point is to find the values of b = 1/a such that the power series expansion of u(1 − (1 − u)b)−1 has nonnegative coefficients.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Shifeng Ding ◽  
Weijun Liu

Multiple zeta values are the numbers defined by the convergent seriesζ(s1,s2,…,sk)=∑n1>n2>⋯>nk>0(1/n1s1 n2s2⋯nksk), wheres1,s2,…,skare positive integers withs1>1. Fork≤n, letE(2n,k)be the sum of all multiple zeta values with even arguments whose weight is2nand whose depth isk. The well-known resultE(2n,2)=3ζ(2n)/4was extended toE(2n,3)andE(2n,4)by Z. Shen and T. Cai. Applying the theory of symmetric functions, Hoffman gave an explicit generating function for the numbersE(2n,k)and then gave a direct formula forE(2n,k)for arbitraryk≤n. In this paper we apply a technique introduced by Granville to present an algorithm to calculateE(2n,k)and prove that the direct formula can also be deduced from Eisenstein's double product.


2020 ◽  
Vol DMTCS Proceedings, 28th... ◽  
Author(s):  
Philippe Biane ◽  
Matthieu Josuat-Vergès

International audience It is known that the number of minimal factorizations of the long cycle in the symmetric group into a product of k cycles of given lengths has a very simple formula: it is nk−1 where n is the rank of the underlying symmetric group and k is the number of factors. In particular, this is nn−2 for transposition factorizations. The goal of this work is to prove a multivariate generalization of this result. As a byproduct, we get a multivariate analog of Postnikov's hook length formula for trees, and a refined enumeration of final chains of noncrossing partitions.


2010 ◽  
Vol DMTCS Proceedings vol. AN,... (Proceedings) ◽  
Author(s):  
Sergey Kitaev ◽  
Jeffrey Remmel

International audience A poset is said to be (2+2)-free if it does not contain an induced subposet that is isomorphic to 2+2, the union of two disjoint 2-element chains. In a recent paper, Bousquet-Mélou et al. found, using so called ascent sequences, the generating function for the number of (2+2)-free posets: $P(t)=∑_n≥ 0 ∏_i=1^n ( 1-(1-t)^i)$. We extend this result by finding the generating function for (2+2)-free posets when four statistics are taken into account, one of which is the number of minimal elements in a poset. We also show that in a special case when only minimal elements are of interest, our rather involved generating function can be rewritten in the form $P(t,z)=∑_n,k ≥0 p_n,k t^n z^k = 1+ ∑_n ≥0\frac{zt}{(1-zt)^n+1}∏_i=1^n (1-(1-t)^i)$ where $p_n,k$ equals the number of (2+2)-free posets of size $n$ with $k$ minimal elements. Un poset sera dit (2+2)-libre s'il ne contient aucun sous-poset isomorphe à 2+2, l'union disjointe de deux chaînes à deux éléments. Dans un article récent, Bousquet-Mélou et al. ont trouvé, à l'aide de "suites de montées'', la fonction génératrice des nombres de posets (2+2)-libres: c'est $P(t)=∑_n≥ 0 ∏_i=1^n ( 1-(1-t)^i)$. Nous étendons ce résultat en trouvant la fonction génératrice des posets (\textrm2+2)-libres rendant compte de quatre statistiques, dont le nombre d'éléments minimaux du poset. Nous montrons aussi que lorsqu'on ne s'intéresse qu'au nombre d'éléments minimaux, notre fonction génératrice assez compliquée peut être simplifiée en$P(t,z)=∑_n,k ≥0 p_n,k t^n z^k = 1+ ∑_n ≥0\frac{zt}{(1-zt)^n+1}∏_i=1^n (1-(1-t)^i)$, où $p_n,k$ est le nombre de posets (2+2)-libres de taille $n$ avec $k$ éléments minimaux.


2021 ◽  
Vol Volume 43 - Special... ◽  
Author(s):  
Dandan Chen ◽  
Rong Chen ◽  
Frank Garvan

International audience It is well known that Ramanujan conjectured congruences modulo powers of 5, 7 and 11 for the partition function. These were subsequently proved by Watson (1938) and Atkin (1967). In 2009 Choi, Kang, and Lovejoy proved congruences modulo powers of 5 for the crank parity function. The generating function for the rank parity function is f (q), which is the first example of a mock theta function that Ramanujan mentioned in his last letter to Hardy. We prove congruences modulo powers of 5 for the rank parity function.


Sign in / Sign up

Export Citation Format

Share Document