scholarly journals Counting occurrences for a finite set of words: an inclusion-exclusion approach

2007 ◽  
Vol DMTCS Proceedings vol. AH,... (Proceedings) ◽  
Author(s):  
Frédérique Bassino ◽  
Julien Clément ◽  
J. Fayolle ◽  
P. Nicodème

International audience In this paper, we give the multivariate generating function counting texts according to their length and to the number of occurrences of words from a finite set. The application of the inclusion-exclusion principle to word counting due to Goulden and Jackson (1979, 1983) is used to derive the result. Unlike some other techniques which suppose that the set of words is reduced (<i>i..e.</i>, where no two words are factor of one another), the finite set can be chosen arbitrarily. Noonan and Zeilberger (1999) already provided a MAPLE package treating the non-reduced case, without giving an expression of the generating function or a detailed proof. We give a complete proof validating the use of the inclusion-exclusion principle and compare the complexity of the method proposed here with the one using automata for solving the problem.

2014 ◽  
Vol DMTCS Proceedings vol. AT,... (Proceedings) ◽  
Author(s):  
Sean Carrell ◽  
Guillaume Chapuy

International audience We establish a simple recurrence formula for the number $Q_g^n$ of rooted orientable maps counted by edges and genus. The formula is a consequence of the KP equation for the generating function of bipartite maps, coupled with a Tutte equation, and it was apparently unnoticed before. It gives by far the fastest known way of computing these numbers, or the fixed-genus generating functions, especially for large $g$. The formula is similar in look to the one discovered by Goulden and Jackson for triangulations (although the latter does not rely on an additional Tutte equation). Both of them have a very combinatorial flavour, but finding a bijective interpretation is currently unsolved - should such an interpretation exist, the history of bijective methods for maps would tend to show that the case treated here is easier to start with than the one of triangulations. Nous établissons une formule de récurrence simple pour le nombre $Q_g^n$ de cartes enracinées de genre $g$ à $n$ arêtes. Cette formule est une conséquence relativement simple du fait que la série génératrice des cartes biparties est une solution de l’équation KP et d’une équation de Tutte, et elle était apparemment passée inaperçue jusque là. Elle donne de loin le moyen le plus rapide pour calculer ces nombres, en particulier quand $g$est grand. La formule est d’apparence similaire à celle découverte par Goulden et Jackson pour les triangulations (quoique cette dernière ne repose pas sur une équation de Tutte additionnelle). Les deux formules ont une saveur très combinatoire, mais trouver une interprétation bijective reste un problème ouvert – mais si une telle interprétation existe, l’histoire des méthodes bijectives pour les cartes tendrait à montrer que le cas traité ici est plus facile pour commencer que celui des triangulations.


Author(s):  
Frank S. Levin

Surfing the Quantum World bridges the gap between in-depth textbooks and typical popular science books on quantum ideas and phenomena. Among its significant features is the description of a host of mind-bending phenomena, such as a quantum object being in two places at once or a certain minus sign being the most consequential in the universe. Much of its first part is historical, starting with the ancient Greeks and their concepts of light, and ending with the creation of quantum mechanics. The second part begins by applying quantum mechanics and its probability nature to a pedagogical system, the one-dimensional box, an analog of which is a musical-instrument string. This is followed by a gentle introduction to the fundamental principles of quantum theory, whose core concepts and symbolic representations are the foundation for most of the subsequent chapters. For instance, it is shown how quantum theory explains the properties of the hydrogen atom and, via quantum spin and Pauli’s Exclusion Principle, how it accounts for the structure of the periodic table. White dwarf and neutron stars are seen to be gigantic quantum objects, while the maximum height of mountains is shown to have a quantum basis. Among the many other topics considered are a variety of interference phenomena, those that display the wave properties of particles like electrons and photons, and even of large molecules. The book concludes with a wide-ranging discussion of interpretational and philosophic issues, introduced in Chapters 14 by entanglement and 15 by Schrödinger’s cat.


2021 ◽  
pp. 1-62
Author(s):  
David Pietraszewski

Abstract We don't yet have adequate theories of what the human mind is representing when it represents a social group. Worse still, many people think we do. This mistaken belief is a consequence of the state of play: Until now, researchers have relied on their own intuitions to link up the concept social group on the one hand, and the results of particular studies or models on the other. While necessary, this reliance on intuition has been purchased at considerable cost. When looked at soberly, existing theories of social groups are either (i) literal, but not remotely adequate (such as models built atop economic games), or (ii) simply metaphorical (typically a subsumption or containment metaphor). Intuition is filling in the gaps of an explicit theory. This paper presents a computational theory of what, literally, a group representation is in the context of conflict: it is the assignment of agents to specific roles within a small number of triadic interaction types. This “mental definition” of a group paves the way for a computational theory of social groups—in that it provides a theory of what exactly the information-processing problem of representing and reasoning about a group is. For psychologists, this paper offers a different way to conceptualize and study groups, and suggests that a non-tautological definition of a social group is possible. For cognitive scientists, this paper provides a computational benchmark against which natural and artificial intelligences can be held.


2014 ◽  
Vol Vol. 16 no. 1 (Combinatorics) ◽  
Author(s):  
Toufik Mansour ◽  
Mark Shattuck ◽  
Mark Wilson

Combinatorics International audience A composition is a sequence of positive integers, called parts, having a fixed sum. By an m-congruence succession, we will mean a pair of adjacent parts x and y within a composition such that x=y(modm). Here, we consider the problem of counting the compositions of size n according to the number of m-congruence successions, extending recent results concerning successions on subsets and permutations. A general formula is obtained, which reduces in the limiting case to the known generating function formula for the number of Carlitz compositions. Special attention is paid to the case m=2, where further enumerative results may be obtained by means of combinatorial arguments. Finally, an asymptotic estimate is provided for the number of compositions of size n having no m-congruence successions.


2012 ◽  
Vol Vol. 14 no. 2 (Graph Theory) ◽  
Author(s):  
Dieter Rautenbach ◽  
Friedrich Regen

Graph Theory International audience We study graphs G in which the maximum number of vertex-disjoint cycles nu(G) is close to the cyclomatic number mu(G), which is a natural upper bound for nu(G). Our main result is the existence of a finite set P(k) of graphs for all k is an element of N-0 such that every 2-connected graph G with mu(G)-nu(G) = k arises by applying a simple extension rule to a graph in P(k). As an algorithmic consequence we describe algorithms calculating minmu(G)-nu(G), k + 1 in linear time for fixed k.


2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Lenny Tevlin

International audience This paper contains two results. First, I propose a $q$-generalization of a certain sequence of positive integers, related to Catalan numbers, introduced by Zeilberger, see Lassalle (2010). These $q$-integers are palindromic polynomials in $q$ with positive integer coefficients. The positivity depends on the positivity of a certain difference of products of $q$-binomial coefficients.To this end, I introduce a new inversion/major statistics on lattice walks. The difference in $q$-binomial coefficients is then seen as a generating function of weighted walks that remain in the upper half-plan. Cet document contient deux résultats. Tout d’abord, je vous propose un $q$-generalization d’une certaine séquence de nombres entiers positifs, liés à nombres de Catalan, introduites par Zeilberger (Lassalle, 2010). Ces $q$-integers sont des polynômes palindromiques à $q$ à coefficients entiers positifs. La positivité dépend de la positivité d’une certaine différence de produits de $q$-coefficients binomial.Pour ce faire, je vous présente une nouvelle inversion/major index sur les chemins du réseau. La différence de $q$-binomial coefficients est alors considérée comme une fonction de génération de trajets pondérés qui restent dans le demi-plan supérieur.


2014 ◽  
Vol Vol. 16 no. 1 (Combinatorics) ◽  
Author(s):  
Adrian Tanasa ◽  
Gerard Duchamp ◽  
Loïc Foissy ◽  
Nguyen Hoang-Nghia ◽  
Dominique Manchon

Combinatorics International audience A non-commutative, planar, Hopf algebra of planar rooted trees was defined independently by one of the authors in Foissy (2002) and by R. Holtkamp in Holtkamp (2003). In this paper we propose such a non-commutative Hopf algebra for graphs. In order to define a non-commutative product we use a quantum field theoretical (QFT) idea, namely the one of introducing discrete scales on each edge of the graph (which, within the QFT framework, corresponds to energy scales of the associated propagators). Finally, we analyze the associated quadri-coalgebra and codendrifrom structures.


1997 ◽  
Vol 11 (3) ◽  
pp. 273-278 ◽  
Author(s):  
Ilan Adler ◽  
Sheldon M. Ross

We compute the first two moments and give a recursive formula for the generating function of the first k-record index for a sequence of independent and identically distributed random variables that take on a finite set of possible values. When the random variables have an infinite support, we bound the distribution of the index of the first k-record and show that its mean is infinite.


Author(s):  
Andrea Moro

Understanding the nature and the structure of human language coincides with capturing the constraints which make a conceivable language possible or, equivalently, with discovering whether there can be any impossible languages at all. This book explores these related issues, paralleling the effort of a biologist who attempts at describing the class of impossible animals. In biology, one can appeal for example to physical laws of nature (such as entropy or gravity) but when it comes to language the path becomes intricate and difficult for the physical laws cannot be exploited. In linguistics, in fact, there are two distinct empirical domains to explore: on the one hand, the formal domain of syntax, where different languages are compared trying to understand how much they can differ; on the other, the neurobiological domain, where the flow of information through the complex neural networks and the electric code exploited by neurons is uncovered and measured. By referring to the most advanced experiments in Neurolinguistics the book in fact offers an updated descriptions of modern linguistics and allows the reader to formulate new and surprising questions. Moreover, since syntax - the capacity to generate novel structures (sentences) by recombining a finite set of elements (words) - is the fingerprint of all and only human languages this books ultimately deals with the fundamental questions which characterize the search for our origins.


Sign in / Sign up

Export Citation Format

Share Document