scholarly journals The Bruhat order on conjugation-invariant sets of involutions in the symmetric group

2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Mikael Hansson

12 pages, 3 figures International audience Let $I_n$ be the set of involutions in the symmetric group $S_n$, and for $A \subseteq \{0,1,\ldots,n\}$, let \[ F_n^A=\{\sigma \in I_n \mid \text{$\sigma$ has $a$ fixed points for some $a \in A$}\}. \] We give a complete characterisation of the sets $A$ for which $F_n^A$, with the order induced by the Bruhat order on $S_n$, is a graded poset. In particular, we prove that $F_n^{\{1\}}$ (i.e., the set of involutions with exactly one fixed point) is graded, which settles a conjecture of Hultman in the affirmative. When $F_n^A$ is graded, we give its rank function. We also give a short new proof of the EL-shellability of $F_n^{\{0\}}$ (i.e., the set of fixed point-free involutions), which was recently proved by Can, Cherniavsky, and Twelbeck. Soit $I_n$ l’ensemble d’involutions dans le groupe symétrique $S_n$, et pour $A \subseteq \{0,1,\ldots,n\}$, soit\[ F_n^A=\{\sigma \in I_n \mid \text{$\sigma$ a $a$ points fixes pour quelque $a \in A$}\}. \] Nous caractérisons tous les ensembles $A$ dont les $F_n^A$ , avec l’ordre induit par l’ordre de Bruhat sur $S_n$, est un posetgradué. En particulier, nous démontrons que $F_n^{\{1\}}$ (c’est-à-dire, l’ensemble d’involutions avec précis en point fixe)est gradué, ce qui résout une conjecture d’Hultman à l’affirmative. Lorsque $F_n^A$ est gradué, nous donnons sa fonctionde rang. En plus, nous donnons une nouvelle démonstration courte l’EL-shellability de $F_n^{\{0\}}$ (c’est-à-dire, l’ensembled’involutions sans points fixes), établie récemment par Can, Cherniavsky et Twelbeck.

2015 ◽  
Vol Vol. 17 no. 1 (Combinatorics) ◽  
Author(s):  
Bridget Eileen Tenner

Combinatorics International audience In this paper we study those generic intervals in the Bruhat order of the symmetric group that are isomorphic to the principal order ideal of a permutation w, and consider when the minimum and maximum elements of those intervals are related by a certain property of their reduced words. We show that the property does not hold when w is a decomposable permutation, and that the property always holds when w is the longest permutation.


2011 ◽  
Vol DMTCS Proceedings vol. AO,... (Proceedings) ◽  
Author(s):  
Nicholas Teff

International audience We combinatorially construct the complex cohomology (equivariant and ordinary) of a family of algebraic varieties called regular semisimple Hessenberg varieties. This construction is purely in terms of the Bruhat order on the symmetric group. From this a representation of the symmetric group on the cohomology is defined. This representation generalizes work of Procesi, Stembridge and Tymoczko. Here a partial answer to an open question of Tymoczko is provided in our two main result. The first states, when the variety has multiple connected components, this representation is made up by inducing through a parabolic subgroup of the symmetric group. Using this, our second result obtains, for a special family of varieties, an explicit formula for this representation via Young's rule, giving the multiplicity of the irreducible representations in terms of the classical Kostka numbers. Nous construisons la cohomologie complexe (équivariante et ordinaire) d'une famille de variétés algébriques appelées variétés régulières semisimples de Hessenberg. Cette construction utilise exclusivement l'ordre de Bruhat sur le groupe symétrique, et on en déduit une représentation du groupe symétrique sur la cohomologie. Cette représentation généralise des résultats de Procesi, Stembridge et Tymoczko. Nous offrons ici une réponse partielle à une question de Tymoczko grâce à nos deux résultats principaux. Le premier déclare que lorsque la variété a plusieurs composantes connexes, cette représentation s'obtient par induction à travers un sous-groupe parabolique du groupe symétrique. Nous en déduisons notre deuxième résultat qui fournit, pour une famille spéciale de variétés, une formule explicite pour cette représentation par la règle de Young, et donne ainsi la multiplicité des représentations irréductibles en termes des nombres classiques de Kostka.


10.37236/3861 ◽  
2014 ◽  
Vol 21 (2) ◽  
Author(s):  
Matthew Watson

We provide a structural description of Bruhat order on the set $F_{2n}$ of fixed-point-free involutions in the symetric group $S_{2n}$ which yields a combinatorial proof of a combinatorial identity that is an expansion of its rank-generating function. The decomposition is accomplished via a natural poset congruence, which yields a new interpretation and proof of a combinatorial identity that counts the number of rook placements on the Ferrers boards lying under all Dyck paths of a given length $2n$. Additionally, this result extends naturally to prove new combinatorial identities that sum over other Catalan objects: 312-avoiding permutations, plane forests, and binary trees.


2020 ◽  
Vol 13 (06) ◽  
pp. 2050053
Author(s):  
U. A. Rozikov ◽  
S. K. Shoyimardonov

We consider the Leslie’s prey–predator model with discrete time. This model is given by a nonlinear evolution operator depending on five parameters. We show that this operator has two fixed points and define type of each fixed point depending on the parameters. Finding two invariant sets of the evolution operator, we study the dynamical systems generated by the operator on each invariant set. Depending on the parameters, we classify the dynamics between a predator and a prey of the Leslie’s model.


2010 ◽  
Vol DMTCS Proceedings vol. AN,... (Proceedings) ◽  
Author(s):  
Eli Bagno ◽  
Yonah Cherniavsky

International audience We study the poset of Borel congruence classes of symmetric matrices ordered by containment of closures. We give a combinatorial description of this poset and calculate its rank function. We discuss the relation between this poset and the Bruhat poset of involutions of the symmetric group. Also we present the poset of Borel congruence classes of anti-symmetric matrices ordered by containment of closures. We show that there exists a bijection between the set of these classes and the set of involutions of the symmetric group. We give two formulas for the rank function of this poset. Nous étudions l'ensemble ordonné des classes de congruence de matrices symétriques ordonnées par containment de leurs fermetures. Nous donnons une description combinatoire de cet ensemble et calculons sa fonction rang. Nous étudions les relations entre cet ensemble et l'ensemble des involutions du groupe symétrique ordonné selon l'ordre de Bruhat. Nous montrons qu'il existe une bijection parmi l'ensemble ordonné de classes de congruences de Borel des matrices anti-symétriques et l'ensemble des involutions du groupe symétrique. On termine en donnant deux formules pour la fonction rang pour ce dernier ensemble.


Filomat ◽  
2017 ◽  
Vol 31 (11) ◽  
pp. 3157-3172
Author(s):  
Mujahid Abbas ◽  
Bahru Leyew ◽  
Safeer Khan

In this paper, the concept of a new ?-generalized quasi metric space is introduced. A number of well-known quasi metric spaces are retrieved from ?-generalized quasi metric space. Some general fixed point theorems in a ?-generalized quasi metric spaces are proved, which generalize, modify and unify some existing fixed point theorems in the literature. We also give applications of our results to obtain fixed points for contraction mappings in the domain of words and to prove the existence of periodic solutions of delay differential equations.


2010 ◽  
Vol 17 (2) ◽  
pp. 273-285
Author(s):  
Tayyab Kamran ◽  
Quanita Kiran

Abstract In [Int. J. Math. Math. Sci. 2005: 3045–3055] by Liu et al. the common property (E.A) for two pairs of hybrid maps is defined. Recently, O'Regan and Shahzad [Acta Math. Sin. (Engl. Ser.) 23: 1601–1610, 2007] have introduced a very general contractive condition and obtained some fixed point results for hybrid maps. We introduce a new property for pairs of hybrid maps that contains the property (E.A) and obtain some coincidence and fixed point theorems that extend/generalize some results from the above-mentioned papers.


Symmetry ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 501
Author(s):  
Ahmed Boudaoui ◽  
Khadidja Mebarki ◽  
Wasfi Shatanawi ◽  
Kamaleldin Abodayeh

In this article, we employ the notion of coupled fixed points on a complete b-metric space endowed with a graph to give sufficient conditions to guarantee a solution of system of differential equations with impulse effects. We derive recisely some new coupled fixed point theorems under some conditions and then apply our results to achieve our goal.


Sign in / Sign up

Export Citation Format

Share Document